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Chapter 3 二阶线性抛物方程

3.1 热传导方程

考虑热传导方程

∂u

∂t
− a2Δu = f(x, t), t > 0

其基本解记为 E(x, t)，考虑

∂E(x, t)

∂t
− a2ΔE(x, t) = δ(x, t)

在 x 方向做 Fourier 变换

∂

∂t
Ê(t, ξ) + a2|ξ|2Ê(t, ξ) = δ(t)

于是得到

Ê(t, ξ) = H(t)e−a2|ξ|2t

于是有

回忆

F (e− 1
2 |x|2) = (2π)

n
2 e− 1

2 |ξ|2

从而

(2π)− n
2 e− 1

2 |x|2
= F

−1 (e− 1
2 |ξ|2)

于是我们知道

E(t,x) = (a√2t)−nH(t)(2π)− n
2 e

− 1
2

x

a√2t

2

= (4πa2t)− n
2 H(t)e−

|x|2

4a2t , t > 0

3.1.1 Cauchy 问题

考虑方程

E(x, t) = F
−1
ξ→xÊ(t, ξ)

= (2π)−n ∫
Rn

eixξH(t)e−a2|ξ|2tdξ

= (2π)−n(a√2t)−nH(t)∫
Rn

e
ix(a√2ξ)

a√2t e− 1
2 |a√2tξ|2

d(a√2tξ)∣ ∣
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{

我们考虑叠加原理，只需要分别解方程

{ , {

我们先解决齐次方程

{

对 u 在 x 方向做 Fourier 变换，将其变成 ODE 的初值问题：

我们可以得到

û(t, ξ) = φ̂(ξ)e−a2|ξ|2t

由于

ˆf1 ∗ f2 = f̂1 ⋅ f̂2 ⟹ f1 ∗ f2 = F
−1(f̂1 ⋅ f̂2)

令 f1 = φ(x), f̂1 = φ̂(ξ)，与 f̂2(ξ) = e−a2|ξ|2t，于是我们有

f2 = F
−1(e−a2|ξ|2t) = (4πa2t)

−n
2 H(t)e− |x|2

4a2t = E(x, t)

所以知道

u(x, t) = F
−1(û) = F

−1 (φ̂(ξ) ⋅ Ê(x, t)) = E(x, t) ∗x φ(x)

从而计算得到形式解

u(x, t) = (4πa2t)
−n
2 H(t)∫

Rn

φ(y)e−
|x−y|2

4a2t dy

可以验证满足方程和初值条件

( ∂

∂t
− a2Δ) (E(x, t) ∗x φ(x)) = δ(x, t) ∗x φ(x) = ⟨δ(y, t),φ(x − y)⟩y = δ(t)φ(x) = 0(t > 0)

下面验证满足初值，即

lim
t→0+

u(x, t) = φ(x)

这等价于证明

lim
t→0+

E(x, t) ∗x φ(x) = φ(x)

∂u

∂t
− a2Δu = f(x, t), t > 0

u|t=0 = φ(x),

∂u

∂t
− a2Δu = 0, t > 0

u|t=0 = φ(x),

∂u

∂t
− a2Δu = f(x, t), t > 0

u|t=0 = 0,

∂u

∂t
− a2Δu = 0, t > 0

u|t=0 = φ(x),

⎧⎪⎨⎪⎩ dû(t, ξ)

dt
+ a2|ξ|2û(t, ξ) = 0

û(t, ξ)|t=0 = φ̂(ξ)



即证明

lim
t→0+

E(x, t) = δ(x) ∈ D
′(Rn)

这是因为：对于任意的试验函数 ϕ(x) ∈ D(Rn)，都有

lim
t→0+

∫
Rn

E(t,x)ϕ(x)dx = ϕ(0)

对于任意 t > 0，函数 E(t,x) 在整个空间 Rn 上的积分恒为 1：

∫
Rn

E(t,x)dx = ∫
Rn

(4πa2t)− n
2 e

−
|x|2

4a2t dx

我们做一个换元，令 y =
x

√4a2t
，那么 x = √4a2t ⋅ y，有

dx = (√4a2t)ndy = (4a2t)
n
2 dy

代入积分中：

∫
Rn

E(t,x)dx = (4πa2t)− n
2 ∫

Rn

e−|y|2
(4a2t)

n
2 dy

系数项正好消掉：

= π− n
2 ∫

Rn

e−|y|2
dy = 1

下面我们需要证明，当 t → 0+ 时，除了原点的一个任意小的邻域外，其他地方的积分都趋向
于0，任取一个 ϵ > 0，我们将积分区域分成两部分：一个是以原点为中心、半径为 ϵ 的球
B(0, ϵ)，以及它的补集 Rn ∖ B(0, ϵ)：我们来考察在球外部分的积分：

∫
|x|≥ϵ

E(t,x)dx = ∫
|x|≥ϵ

(4πa2t)− n
2 e

−
|x|2

4a2t dx

再次使用换元 y =
x

√4a2t
，那么积分区域变为 |y| ≥

ϵ

√4a2t
：

= π− n
2 ∫

|y|≥ ϵ

√4a2t

e−|y|2
dy

当 t → 0+ 时，积分下限 
ϵ

√4a2t
→ ∞，这意味着我们是在一个半径趋于无穷大的球外部进行

积分，由于 e−|y|2  是一个快速衰减的函数，它在无穷远处的积分为0，所以：

lim
t→0+

∫
|x|≥ϵ

E(t,x)dx = 0

现在计算 lim
t→0+

∫
Rn

E(t,x)ϕ(x)dx，我们知道

(作业) Homework



现在考察方程

ϕ(0) = ϕ(0) ⋅ 1 = ϕ(0)∫
Rn

E(t,x)dx = ∫
Rn

E(t,x)ϕ(0)dx

因此，我们要考察的极限可以写成：

lim
t→0+

∫
Rn

E(t,x)ϕ(x)dx − ϕ(0) = lim
t→0+

∫
Rn

E(t,x)[ϕ(x) − ϕ(0)]dx

我们想证明这个极限等于0，我们将积分拆分成两部分，以任意小的 ϵ > 0 为界：

∫
Rn

E(t,x)[ϕ(x) − ϕ(0)]dx = ∫
|x|<ϵ

E(t,x)[ϕ(x) − ϕ(0)]dx

I1

+ ∫
|x|≥ϵ

E(t,x)[ϕ(x) − ϕ(0)]dx

I2

因为 ϕ(x) 是一个连续函数，当 |x| < ϵ 时，ϕ(x) 非常接近 ϕ(0)。根据连续性的定义，对于
任意 η > 0，我们总可以找到一个足够小的 ϵ > 0，使得当 |x| < ϵ 时，有 |ϕ(x) − ϕ(0)| < η，
因此：

|I1| ≤ ∫
|x|<ϵ

E(t,x)|ϕ(x) − ϕ(0)|dx < η∫
|x|<ϵ

E(t,x)dx

由于 E(t,x) > 0 且总积分为1，我们有 ∫
|x|<ϵ

E(t,x)dx ≤ ∫
Rn

E(t,x)dx = 1，所以 |I1| < η.

由于 ϕ(x) 是紧支集函数，它在某个大球之外恒为0，因此是有界的。设 |ϕ(x)| ≤ M  对所有
x 成立。那么 |ϕ(x) − ϕ(0)| ≤ |ϕ(x)| + |ϕ(0)| ≤ 2M .

|I2| ≤ ∫
|x|≥ϵ

E(t,x)|ϕ(x) − ϕ(0)|dx ≤ 2M ∫
|x|≥ϵ

E(t,x)dx

根据步骤二的结论，我们知道 lim
t→0+

∫
|x|≥ϵ

E(t,x)dx = 0，因此，对于给定的 ϵ，我们总能找到

一个 T > 0，当 0 < t < T  时，使得 ∫
|x|≥ϵ

E(t,x)dx 足够小，比如小于 
η

2M
，这样 |I2| < η.

综上所述，对于任意给定的 η > 0，我们可以先选择一个足够小的 ϵ 使得 |I1| < η 成立，然
后对于这个 ϵ，再选择一个足够小的 t 使得 |I2| < η 成立，所以，当 t → 0+ 时，

∫
Rn

E(t,x)[ϕ(x) − ϕ(0)]dx ≤ |I1| + |I2| < 2η

因为 η 是任意小的正数，这证明了极限为0：

lim
t→0+

∫
Rn

E(t,x)[ϕ(x) − ϕ(0)]dx = 0

即：

lim
t→0+

∫
Rn

E(t,x)ϕ(x)dx = ϕ(0)

 ∣ ∣



{
∂u

∂t
− a2Δu = f(x, t), t > 0

u|t=0 = 0,

✏️笔记：

这里可以使用 Duhamel 原理求解：我们考虑函数 U(x, t, τ) 满足：

{

现在令

u(x, t) = ∫
t

0
U(x, t, τ)dτ

下面说明 u 就是方程的解，现在我们计算

于是得到

∂u

∂t
− a2Δu = f(x, t)

并且

u|t=0 = ∫
0

0
Udτ = 0

所以满足所求. 现在利用前面求的第一种情况可以知道 U  的形状，即

U(x, t, τ) = E(x, t − τ) ∗x f(x, τ) = (4πa2(t − τ))
−n

2 H(t − τ)∫
Rn

f(y)e
− |x−y|2

4a2(t−τ) dy

代入 u(x, t) 的表达式即

∂U

∂t
= a2ΔU , t > τ > 0

U |t=τ = f(x, τ),

∂u

∂t
− a2Δu = U(x, t, t) + ∫

t

0

∂U(x, t, τ)

∂t
dτ

= f(x, t) + a2 ∫
t

0
ΔU(x, t, τ)dτ

= f(x, t) + a2Δ∫
t

0
U(x, t, τ)dτ

= f(x, t) + a2Δu(x, t)

u(x, t) = ∫
t

0

U(x, t, τ)dτ

= ∫
t

0
(4πa2(t − τ))

−n

2 H(t − τ)∫
Rn

f(y)e
− |x−y|2

4a2(t−τ) dydτ

= ∫
t

0
∫
Rn

f(y, τ)((4πa2(t − τ))
−n
2 H(t − τ)e

−
|x−y|2

4a2(t−τ) )dydτ

= E(x, t) ∗ (Heat(t)f(x, t))



现在考虑用基本解的方法来解这个方程

(P) : {

我们期望使用基本解的性质，现在有

Pu = f

已知 E 是 P  的基本解，则

u = E ∗ f

为 Pu = f 的 D ′ 解，而 P =
∂

∂t
− a2Δ 的基本解我们已经得到. 现在令

ũ(x, t) = H(t)u(x, t)

有

(
∂

∂t
− a2Δ)ũ(x, t)

Δ
= F(x, t)

希望 F(x, t) 中包含方程的初值条件 φ(x)，从而得到

ũ(x, t) = E(x, t) ∗ F(x, t)
t>0
= u(x, t)

证明如下：

对于任意的 ψ ∈ C∞
0 ，我们计算

于是在 D ′ 中，有

δ(t)u(x, t) = φ(x)δ(t)

于是我们有

其中 Heat 为 Green 函数，热核.
PS:孩子们我不懂，我乱抄的，这一段也许应该skip

∂u

∂t
− a2Δu = f(x, t), t > 0

u|t=0 = φ(x),

(
∂

∂t
− a2Δ)ũ(x, t) =

∂

∂t
(H(t)u(x, t)) − a2Δ(H(t)u(x, t))

= δ(t)u(x, t) + H(t)
∂u

∂t
− H(t)a2Δu

= δ(t)u(x, t) + H(t)f(x, t)

⟨δ(t)u(x, t),ψ(t)⟩ = ⟨δ(t),u(x, t)ψ(t)⟩

= u(x, 0)ψ(0)

= φ(x)⟨δ(t),ψ(t)⟩

= ⟨φ(x)δ(t),ψ(t)⟩



(
∂

∂t
− a2Δ)ũ(x, t) = φ(x)δ(t) + H(t)f(x, t)

利用基本解的性质，我们得到

回忆

E(x, t) = (4πa2t)− n
2 H(t)e−

|x|2

4a2t

对于积分 I1 而言：对 δ(t) 磨光，设 Φε(x) 为磨光核，令

δε(t) = δ(t) ∗ Φε(t)

于是有

取极限有

(δ(t)φ(x)) ∗ E(x, t) = ⟨φ(y), ⟨δ(τ),E(x − y, t − τ)⟩⟩ = ⟨φ(y),E(x − y, t)⟩ = E(x, t) ∗x φ(x)

对于积分 I2 而言：

容易验证满足方程.

3.1.2 热传导方程的初边值问题

考虑方程：

ũ(x, t) = E(x, t) ∗ (φ(x)δ(t) + H(t)f(x, t))

= E(x, t) ∗ (δ(t)φ(x)) + E(x, t) ∗ (H(t)f(x, t))

:= I1 + I2

(δε(t)φ(x)) ∗ E(x, t) = ∫
R

∫
Rn

δε(τ)φ(y)E(x − y, t − τ)dτdy

= ∫ φ(y)dy∫ δε(τ)E(x − y, t − τ)dτ

= ⟨φ(y), ⟨δε(τ),E(x − y, t − τ)⟩⟩

E(x, t) ∗ (H(t)f(x, t)) = ∫
Rn

∫
R

H(τ)f(y, τ)E(x − y, t − τ)dydτ

= ∫
Rn

∫
R

H(τ)f(y, τ)(4πa2(t − τ))− n
2 H(t − τ)e

− |x|2

4a2(t−τ) dydτ

= ∫
Rn

∫
t

0
f(y, τ)(4πa2(t − τ))− n

2 e
− |x|2

4a2(t−τ) dydτ

⎧⎪⎨⎪⎩ ∂u

∂t
− a2Δu = f(x, t), x ∈ Ω, t > 0

u|∂Ω = μ(x, t)
u|t=0 = φ(x)

af://h5-4


其抛物边界为：侧边+底边.

设 u(x, t) 在矩形 RT = {α ≤ x ≤ β, 0 ≤ t ≤ T} 上连续，并在 RT  的内部满足

∂u

∂t
− a2 ∂ 2u

∂x2
= 0

则在 RT  的抛物边界 ΓT

上取到最大值和最小值，即

sup
RT

u = sup
ΓT

u, inf
RT

u = inf
ΓT

u

(定理) 极值原理(n=1)



证明：

证明：

考虑方程

(P):

方程的解是唯一的，且是稳定的.

⎧⎪⎨⎪⎩ ∂u

∂t
− a2 ∂ 2u

∂x2
= f(x, t), t > 0

u|t=0 = φ(x)
u(α, t) = μ1(t),u(β, t) = μ2(t)

(定理) 初边值问题的唯一性与稳定性



⚠️注意：



稳定性：考虑方程

,

对任意的 ε > 0，我们来说如明果存在一个充分小的 δ > 0 使得

sup |ρ1(x) − ρ2(x)| ≤ δ

两个方程的有界解 u1,u2 满足

sup |u1 − u2| ≤ ε

任取上半平面上一点 (x0, t0)，我们考虑一个矩形区域

R = {(x, t) ∣ 0 ≤ t ≤ t0, |x − x0| ≤ L}

由于 u = u1 − u2 满足方程

我们来证明上半平面的极值原理：

⎧⎪⎨⎪⎩ ∂u

∂t
− a2 ∂ 2u

∂x2
= 0, t > 0

u(x, t)|t=0 = ρ1(x)

⎧⎪⎨⎪⎩ ∂u

∂t
− a2 ∂ 2u

∂x2
= 0, t > 0

u(x, t)|t=0 = ρ2(x)

⎧⎪⎨⎪⎩ ∂u

∂t
− a2 ∂ 2u

∂x2
= 0, t > 0

u(x, t)|t=0 = ρ1(x) − ρ2(x)

设 u(x, t) 是柯西问题

⎧⎪⎨⎪⎩ ∂u

∂t
− a2 ∂ 2u

∂x2
= 0, x ∈ R, 0 < t ≤ T

u(x, 0) = ϕ(x)

(定理) 上半平面的极值原理



证明：

设 M0 = sup
y∈R

ϕ(y) 是初始值的上确界，我们要证明对于任意点 (x, t)，都有 u(x, t) ≤ M0.

考虑比较函数：

v(x, t) = M0 +
2M

L2
(x2 + 2a2t)

其中 M  是解 u 的绝对值的上界（|u| ≤ M），L 是某个选定的大数。

容易验证：

vt − a2vxx =
2M

L2
(2a2) − a2 2M

L2
(2) = 0

所以 v 满足热方程，现在我们考虑差函数 z(x, t) = v(x, t) − u(x, t)，z 也满足热方程
zt − a2zxx = 0。

我们在矩形区域 DL = [−L,L] × [0,T ] 上应用有界区域的极值原理。z(x, t) 的最小值必须
在边界 ∂pDL 上取得。

我们检查边界上的值：

1. 底面 (t = 0)：

z(x, 0) = v(x, 0) − u(x, 0) = M0 +
2M

L2
x2 − ϕ(x)

因为 ϕ(x) ≤ M0 且 
2M

L2
x2 ≥ 0，所以：

z(x, 0) ≥ M0 − M0 = 0

2. 侧面 (x = ±L)：

z(±L, t) = v(±L, t) − u(±L, t) = M0 +
2M

L2
(L2 + 2a2t) − u(±L, t)

= M0 + 2M +
4Ma2t

L2
− u(±L, t)

因为我们已知 |u| ≤ M，所以 −u ≥ −M。

z(±L, t) ≥ M0 + 2M + 0 − M = M0 + M

假设 M0 + M ≥ 0 (这通常成立，因为M是绝对值的界，M ≥ |M0|，所以
M + M0 ≥ 0。如果解恒为负，逻辑稍微调整即可，这里通常假设 M  足够大)。

的一个有界解(即存在 M  使得 |u(x, t)| ≤ M)，则

u(x, t) ≤ sup
y∈R

ϕ(y)



利用上半平面的极值原理立刻得到稳定性.

3.1.3 一维热传导方程初边值问题的求解

方程为：

(P) :

第一步：化为零边值条件：构造 ũ(x, t) 满足

ũ(0, t) = μ1(t), ũ(l, t) = μ2(t)

直接用直线来拟合：

ũ(x, t) = μ1(t) +
x

l
(μ2(t) − μ1(t))

令 v = u − ũ，我们发现

v(0, t) = v(l, t) = 0

所以我们只需要求解方程

结论：
在 DL 的整个抛物边界上，都有 z(x, t) ≥ 0。

根据有界区域的极值原理（最小值原理），在整个矩形内部 DL 中，都有：

z(x, t) ≥ 0 ⟹ u(x, t) ≤ v(x, t)

即：

u(x, t) ≤ M0 +
2M

L2
(x2 + 2a2t)

现在我们在任意固定的点 (x, t) 处观察上述不等式。由于 L 是我们可以任意选取的，我们

可以让 L → ∞。当 L → ∞ 时， 2M

L2
(x2 + 2a2t) → 0。

因此，我们得到：

u(x, t) ≤ M0

即

u(x, t) ≤ sup
y∈R

ϕ(y)

总之，这是非负的。实际上更简单地看：

v(±L, t) ≥
2M

L2
L2 = 2M > M ≥ u(±L, t)，所以 v > u，即 z > 0。

⎧⎪⎨⎪⎩ ∂u

∂t
− a2 ∂ 2u

∂x2
= f(x, t), t > 0,x ∈ (0, l)

u(0, t) = μ1(t),u(l, t) = μ2(t)
u|t=0 = φ(x)

af://h5-5


(P0) :

我们把字母换回 u，即解方程：

(P0) :

第二步：利用叠加原理，我们考虑两个方程

(P1) : , (P2) :

分别取 (P1) 与 (P2) 的解 u1,u2，我们知道 u1 + u2 就是 (P0) 的解.

第三步：解齐次方程 (P1).

(P1) :

我们假设 u(x, t) = X(x)T (t)，代入方程可以得到

X(x)T ′(t) − a2X ′′(x)T (t) = 0

于是知道

X ′′(x)

X(x)
=

T ′(t)

a2T (t)
= −μ

其中 μ 为一个常数，于是知道

{

我们对 μ 与 0 的大小关系进行分类讨论，当 μ < 0 的时候，有

X(x) = C1e
√−μx + C2e

−√−μx

代入边值条件 X(0) = X(l) = 0，发现 C1 = C2 = 0 为平凡解.

当 μ = 0 的时候，我们知道 X 形如

X(x) = C1x + C2

代入边值条件发现还是零解.

当 μ > 0 的时候，我们知道

⎧⎪⎨⎪⎩ ∂v

∂t
− a2 ∂ 2v

∂x2
= fv(x, t), t > 0,x ∈ (0, l)

v(0, t) = v(l, t) = 0
v|t=0 = φv(x)

⎧⎪⎨⎪⎩ ∂u

∂t
− a2 ∂ 2u

∂x2
= f(x, t), t > 0,x ∈ (0, l)

u(0, t) = u(l, t) = 0
u|t=0 = φ(x)

⎧⎪⎨⎪⎩ ∂u

∂t
− a2 ∂ 2u

∂x2
= 0, t > 0,x ∈ (0, l)

u(0, t) = u(l, t) = 0
u|t=0 = φ(x)

⎧⎪⎨⎪⎩ ∂u

∂t
− a2 ∂ 2u

∂x2
= f(x, t), t > 0,x ∈ (0, l)

u(0, t) = u(l, t) = 0
u|t=0 = 0

⎧⎪⎨⎪⎩ ∂u

∂t
− a2 ∂ 2u

∂x2
= 0, t > 0,x ∈ (0, l)

u(0, t) = u(l, t) = 0
u|t=0 = φ(x)

X ′′(x) + μX(x) = 0
X(0) = X(l) = 0



X(x) = C1 cos(√μx) + C2 sin(√μx)

代入边值条件，解得

C1 = 0, C2 sin(√μl) = 0

如果想要非平凡解，那就是

sin(√μl) = 0

我们考虑

μk = ( kπ

l
)

2

, k = 0, ±1, ±2, ⋯

对 k ≥ 1，取

Xk(x) = Ck sin
kπ

l
x

现在我们说明 {Xk(x)} 是正交系，我们已有：

{ , {

我们进行恒等变换，有

(X ′′
m(x) + μmXm(x))Xn(x) − (X ′′

n(x) + μnXn(x))Xm(x) = 0

得到

(μm − μn)Xm(x)Xn(x) = Xm(x)X ′′
n(x) − X ′′

m(x)Xn(x)

两边同时积分，得到

LHS = (μm − μn)∫
l

0

Xm(x)Xn(x)dx

与

RHS = ∫
l

0

Xm(x)X ′′
n(x)dx − X ′′

m(x)Xndx = XmX
′
n|l0 − X ′

mXn|l0 = 0

由于 μm ≠ μn，于是知道

∫
l

0
Xm(x)Xn(x)dx = 0

即正交.

现在回到 T (t) 的计算，由于

1. 确定常数 μ 的值，使得常微分方程初值问题有非平凡解，此问题称为 Sturm-Liouville 问题.
2. 得到的 μk 的值称为特征值，Xk(x) 称为特征函数.
3. {Xk(x)}k≥1 为特征函数系，是 L2 ([0, l]) 的完全正交系.

X ′′
m(x) + μmXm(x) = 0

Xm(0) = Xm(l) = 0
X ′′

n(x) + μnXn(x) = 0
Xn(0) = Xn(l) = 0



T ′
k(t)

a2Tk(t)
= −μk

我们知道

Tk(t) = Ãke
−a2( kπ

l
)2
t

于是有

μk(x, t) = Xk(x)Tk(t) = Ake
−a2( kπ

l
)2
t sin

kπ

l
x

从而有

u(x, t) =
∞

∑
k=1

Ake
−a2( kπ

l
)

2
t sin

kπ

l
x

现在我们需要求出 Ak，使得满足初值条件，由于

φ(x) =
∞

∑
k=1

Ak sin
kπx

l

我们直接积分立刻得到

Ak =
2

l
∫

l

0

φ(x) sin
kπx

l
dx

⚠️注意：



于是最终答案为：

u(x, t) =
2

l

∞

∑
k=1

(∫
l

0

φ(x) sin
kπx

l
dx)e−a2( kπ

l
)2
t sin

kπ

l
x

容易发现 |Ak| 一致有界，e−ct 关于 t 速降，从而可以得到上式的收敛性.

第四步： 求解非齐次方程 (P2):

(P2) :

第一个方法是使用 Duhamel 原理：我们考虑 v(x, t, s) 是方程

我们说明

u(x, t) = ∫
t

0

v(x, t, s)ds

为非齐次方程的解：我们首先计算

并且

u(0, t) = ∫
t

0
v(0, t, s)ds = 0 = ∫

t

0
v(l, t, s)ds = u(l, t)

最后有

u(x, 0) = ∫
0

0

v(x, t, s)ds = 0

所以就得到 u 确实是方程的解，现在我们利用齐次的边值问题来解 v，由前面结论我们知道

v(x, t − s) =
2

l

∞

∑
k=1

(∫
l

0
φ(x) sin

kπx

l
dx)e−a2( kπ

l
)2

(t−s) sin
kπ

l
x

所以我们知道

u(x, t) = ∫
t

0
(

2

l

∞

∑
k=1

(∫
l

0
φ(x) sin

kπx

l
dx)e−a2( kπ

l
)2

(t−s) sin
kπ

l
x)ds

第二个方法是使用常数变易法，由于我们已经得到了特征函数系，我们可以把方程

⎧⎪⎨⎪⎩ ∂u

∂t
− a2 ∂ 2u

∂x2
= f(x, t), t > 0,x ∈ (0, l)

u(0, t) = u(l, t) = 0
u|t=0 = 0

⎧⎪⎨⎪⎩( ∂

∂t
− a2 ∂ 2

∂x2
)v(x, t, s) = 0, t > s

v(0, t, s) = v(l, t, s) = 0
v(x, s, s) = f(x, s)

( ∂

∂t
− a2 ∂ 2

∂x2
)u(x, t) = ∫

t

0

( ∂

∂t
− a2 ∂ 2

∂x2
)v(x, t, s)ds + v(x, t, t)

= v(x, t, t) = f(x, s)



(P0) :

中的 u, f,φ 均使用正交系展开，得到

u(x, t) =
∞

∑
k=1

uk(t) sin
kπ

l
x, fk(t) =

∞

∑
k=1

fk(t) sin
kπ

l
x, φ(x) =

∞

∑
k=1

φk sin
kπ

l
x

其中

ξk(t) =
2

l
∫

l

0
ξ(x, t) sin

kπ

l
xdx, ξ ∈ {u, f}, φk =

2

l
∫

l

0
φ(x) sin

kπ

l
x

将上式代入 (P0) 中，一通化简得到(注意相等是逐系数相等)：

从而我们得到

uk = (φk + ∫
t

0
fk(s)ea

2( kπ
l
)2
sds)e−a2( kπ

l
)2
t = φke

−a2( kπ
l
)2
t

(P1)

+ (∫
t

0
fk(s)ea

2( kπ
l
)2
sds)e−a2( kπ

l
)2
t

(P2)

Example

我们可以计算一些例子：考虑方程

这是一个齐次的方程，我们直接套公式得到：

Example

⎧⎪⎨⎪⎩ ∂u

∂t
− a2 ∂ 2u

∂x2
= f(x, t), t > 0,x ∈ (0, l)

u(0, t) = u(l, t) = 0
u|t=0 = φ(x)

⎧⎪⎨⎪⎩u′
k(t) + (

kπ

l
)

2

uk(t) = fk(t)

uk(0) = φk




⎧⎪⎨⎪⎩ ∂u

∂t
−

∂ 2u

∂x2
= 0, 0 < x < π, t > 0

u(0, t) = u(π, t) = 0
u(x, 0) = sinx

u(x, t) =
2

π

∞

∑
k=1

(∫
π

0
sinx sin kx dx)e−k2t sin kx

=
2

π
(∫

π

0
sin2 x dx)e−t sinx

= e−t sinx



考虑方程

对应齐次方程为：

耍流氓不妨设 u(x, t) = X(x)T (t)，别问为什么可以分离变量，因为这样能做出来. 然后分情况
一通剥蒜讨论，解出来正交系然后展开即可. 非齐次的情况继续展开.

3.2 L2 理论

⎧⎪⎨⎪⎩ ∂u

∂t
− a2 ∂ 2u

∂x2
= x(l − x), 0 < x < l

u(0, t) = 0 =
∂u

∂x
(l, t)

u(x, 0) = sin
πx

l
− x

⎧⎪⎨⎪⎩ ∂u

∂t
− a2 ∂ 2u

∂x2
= 0, 0 < x < l

u(0, t) = 0 =
∂u

∂x
(l, t)

af://h4-6


⚠️注意：

证明：

(定义) Def

(定义) Def

(命题) Prop



证明：

(命题) Prop



3.2.1 Lax-Milgram 定理变体

⚠️注意：

(引理) Lem

af://h5-7


证明：



证明：

(定理) Thm



3.2.2 弱解唯一性

证明：

(引理) Lem

af://h5-8


证明：

证明：

(定理) Thm

(定理) Thm
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