
数学物理方程年终总结

Chapter 1 准备知识

1.1 常用不等式

这里常用不等式实际上我觉得也不常用，或者说在后面基本上用不到，但是都是熟知的.

一个常用的推论是带 ε 的 Young 不等式，即

证明：

我们注意到 x
1
p  在 (0, +∞) 上是上凸的，所以我们知道在 x = 1 处的切线 y =

1

p
x +

1

q
 在整条曲线的上

方，即对于任意的 x > 0，有 y =
1

p
x +

1

q
≥ x

1
p，我们令 x =

u

v
 ，得到

u

pv
+

1

q
≥

u
1
p

v
1
p

化简得到

u

p
+

v

q
≥ u

1
p v1− 1

p = u
1
p v

1
q

再令 u = ap, v = bq，我们立刻得到

ap

p
+

bq

q
≥ ab

证明：

只需要在 Young 不等式中取 a = ε
1
p a，b = ε− 1

q b 即可.

a, b > 0，p, q > 1，有 1

p
+

1

q
= 1，则 a

p

p
+

bq

q
≥ ab.

相同的条件，对 ε > 0，有 εap + ε−
p

q bq ≥ ab.

(定理)  You ng 不等式

(推论)  Cor
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证明：

在 Young 不等式中令

a =
|f(x)|

||f(x)||Lp

, b =
|g(x)|

||g(x)||Lq

我们得到

|f(x)g(x)|

||f(x)||Lp ||g(x)||Lq

≤
|f(x)|p

p||f(x)||Lp

+
|g(x)|q

q||g(x)||Lq

在两边积分立刻得到

||fg||L1

||f||Lp ||g||Lq

≤
1

p
+

1

q
= 1

于是我们得到了

||fg||L1 ≤ ||f||Lp ||g||Lq

证明：

首先我们需要说明 f + g ∈ L
p(Ω)，这是因为

|f(x) + g(x)|p ≤ (2 max(|f(x)|, |g(x)|))p ≤ 2p (|f(x)|p + |g(x)|p)

所以 f + g ∈ L
p(Ω)，令 

1

q
= 1 −

1

p
，我们注意到 (f + g)p/q ∈ L

q(Ω)，由 Holder 不等式有

||f ⋅ (f + g)p/q||L1 ≤ ||f||Lp ||(f + g)p/q||Lq , ||g ⋅ (f + g)p/q||L1 ≤ ||g||Lp ||(f + g)p/q||Lq

再结合

|f + g|p = |f + g| ⋅ |f + g|p/q ≤ |f| ⋅ |f + g|p/q + |g| ⋅ |f + g|p/q

对两边积分，有

||f + g||p
Lp ≤ ||f ⋅ (f + g)p/q||L1 + ||g ⋅ (f + g)p/q||L1

≤ ||f||Lp ||(f + g)p/q||Lq + ||g||Lp ||(f + g)p/q||Lq

Ω ⊂ Rn 为可测开集，p, q > 1，有 
1

p
+

1

q
= 1，设 f ∈ L

p(Ω), g ∈ L
q(Ω)，则有 f, g ∈ L

1(Ω)，并且

||fg||L1 ≤ ||f||Lp ||g||Lq .

Ω ⊂ Rn 可测，p ≥ 1，并且 f, g ∈ L
p(Ω)，则有 ||f + g||Lp ≤ ||f||Lp + ||g||Lp .

(定理)  H old er  不等式

(定理)  Minkowski 不等式



1.2 磨光，截断函数，单位分解

我们定义

∂αu =
∂ |α|u

∂xα1

1 ⋯ ∂xαn
n

于是我们可以定义

对于 x ∈ Rn，α ∈ Nn，我们定义

|x| =
n

∑
i=1

x2
i
, xα :=

n

∏
i=1

xαi , α! :=
n

∏
i=1

(αi!)

1 .2 .1 磨光变换

注意到

||(f + g)p/q||Lq = ||f + g||
p/q
Lp

所以有

||f + g||p
Lp ≤ (||f||Lp + ||g||Lp)||f + g||

p/q
Lp

约分即

||f + g||Lp ≤ ||f||Lp + ||g||Lp

⎷⚠️注意：

C k(Ω) 配备上重指标范数是 Banach 空间.

α ∈ Nn 为重指标，有 α = (α1, ⋯ ,αn)，我们定义 |α| = ∑αi.

C k(Ω) 为 Ω 中 k-阶连续可微的全体函数集合，并且定义

|u|k,Ω = ∑
|α|≤k

sup
Ω

|∂αu|

(定义)  重指标

(定义)  重指标范数
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我们可以定义在 C∞
0 (Ω) 中的收敛模式，设 {ϕn(x)} ⊂ C∞

0 (Ω) 收敛于 0 指

如果 ∫
Rn

j(x)dx = 1，则我们有

∫
Rn

jε(x)dx = ∫
Rn

1

εn
j( x

ε
)dx = ∫

Rn

j( ε

x
)d

x

ε
= 1

所以磨光核的积分值也是 1. 并且磨光核 jε(x) 的支集包含在 Bε(0) 中.

存在一个紧集 K，使得对于任意的 ϕn(x)，有 supp ϕn ⊂ K.

ϕn(x) 的任意固定阶 α 微分的序列对 x 一致收敛到 0. 即

lim
k→∞

(sup
x∈Ω

|∂αϕk(x)|) = 0

✏️笔记：

这里的 C∞
0  就是试验函数空间 D，这里的定义是为了让他的对偶空间 D ′ 足够大足够好，因为在这个

空间上的收敛越困难，其上的线性泛函就越容易连续.

–

j(x) 的典型例子是

j(x) = {

其中 A = ∫
B1(0)

e1/(|x|2−1)dx.

🕹️ 例子： 磨光核

1

A
e1/(|x|2−1), |x| < 1

0, |x| ≥ 1

C∞
0 (Ω) 为 Ω 上具有紧支集的光滑函数.

设 j(x) ∈ C∞
0 (Rn) 为一非负函数，满足 supp j(x) ⊂ B1(0) = {x ∈ Rn: |x| < 1}，且满足 ∫

Rn

j(x)dx = 1

，对于 ε > 0，我们记 jε(x) =
1

εn
j(

x

ε
)，称 jε(x) 为磨光核.

––

(定义)  紧支集光滑函数

(定义)  磨光核



我们注意到

fε(x) = ∫
Rn

jε(x − y)f(y)dy = ∫
Rn

jε(y)f(x − y)dy = ∫
Bε(0)

jε(y)f(x − y)dy

这告诉我们如果 f 定义在 U  上，则 fε 就可以定义在 Uε = {x ∈ U ∣ d(x, ∂U) > ε} 上.

我们有结论(from Evans)

特别地，当 f 是紧支集连续函数，我们还有：

函数 f 属于 L1
loc(Ω) 为局部可积函数，当且仅当对于任意紧集 K ⊂ Ω，都有：

∫
K

|f(x)| dx < ∞

对于函数 u ∈ L
1
loc(Rn)，令

uε(x) = (jε ∗ u)(x) = ∫
Rn

jε(x − y)u(y)dy

称 uε(x) 为 u(x) 的磨光.

如果 f 是局部可积函数，定义在 U  上，则

（1）fε ∈ C∞(Uε).

（2）fε → f a.e.，当 ε → 0.

（3）如果 f ∈ C(U)，则 fε 在 U  上紧一致收敛到 f.

（4）对 1 ≤ p < ∞，f ∈ L
p
loc

(U)，则 fε → f 在 Lp
loc

(U) 的意义下收敛.

fε 称为 f 的磨光化或者正则化.

(定义)  局部可积函数

(定义)  磨光变换

(定理)  磨光的性质

(定义)  磨光化/正则化



并且如果 f 连续，则 fε → f，我们可以得到 f 的光滑逼近：

证明：

这是因为

fε(x) = ∫
Bε(0)

jε(y)f(x − y)dy

当 d(x,K) > ε 时，对于 y ∈ Bε(0)，有 f(x − y) ∉ K，从而 f(x − y) = 0，于是 fε(x) = 0.

证明：

已知 K ⊂ Ω，由欧式空间的正规性，知道存在闭集 F  使得 K ⊂ F ∘ ⊂ F ⊂ Ω.

所以我们知道存在 ε0 > 0 使得 K2ε0
⊂ Ω.，我们令

f̃(x) = {

对于任意的 0 < ε ≤ ε0，取 Jε 为磨光核，有

f̃ε(x) = Jε(x) ∗ f̃(x) ∈ C∞
0 (Ω)

有

supp ̃fε ⊂ Kε0+ε ⊂ K2ε0
⊂ Ω

–

f(x), x ∈ Kε0

0, x ∉ Kε0

f ∈ C0(Rn)，设 supp f ⊂ K，其中 K 是紧集，则有

fε ∈ C∞
0 (Rn)

并且有

supp fε ⊂ Kε := {x: d(x,K) ≤ ε}

设 Ω 为开集，f(x) ∈ C(Ω)，则对 Ω 的任意紧子集 K，存在一列函数 {f̃ε(x)} 在 K 上一致收敛到 f(x).

(定理)  磨光也是紧支

(定理)  连续函数的光滑逼近



于是对于任意的 x ∈ K，我们计算

这个估计是对 x ∈ K 一致的，所以得证.

|f̃ε(x) − f(x)| = ∫
Rn

f̃(y)Jε(x − y) − f(x)

= ∫
Rn

Jε(x − y)(f(x) − f̃(y))dy

≤ ∫
Rn

Jε(x − y)|f(x) − f̃(y)|dy

≤ sup
x∈K,|x−y|≤ε

|f(x) − f̃(y)| ⋅ ∫
Rn

Jε(x − y)dy

= sup
x∈K,|x−y|≤ε

|f(x) − f̃(y)| → 0∣ ∣∣ ∣证明：

同理我们知道存在 ε0 > 0 使得 K2ε0
⊂ Ω.，我们令

f̃(x) = {

对于任意的 0 < ε ≤ ε0，取 Jε 为磨光核，有

f̃ε(x) = Jε(x) ∗ f̃(x) ∈ C∞
0 (Ω)

我们估计

当 x ∈ K 时，由于 |x − y| < ε，所以 y ∈ Kε，所以 f̃(y) = f(y)，所以

f(x), x ∈ Kε0

0, x ∉ Kε0

|∂α
x f̃ε − ∂α

x f(x)| = ∂α
x ∫

R

f̃(y)Jε(x − y)dy − ∫
Rn

∂α
x f(x)Jε(x − y)dy

= ∫
Rn

f̃(y)∂α
x Jε(x − y)dy − ∫

Rn

∂α
x f(x)Jε(x − y)dy

= (−1)|α| ∫
Rn

f̃(y)∂α
y Jε(x − y)dy − ∫

Rn

∂α
x f(x)Jε(x − y)dy

= ∫
Rn

∂α
y f̃(y)Jε(x − y)dy − ∫

Rn

∂α
x f(x)Jε(x − y)dy

= ∫
Rn

(∂α
y f̃(y) − ∂α

x f(x))Jε(x − y)dy

≤ sup
|x−y|<ε

∂α
y f̃(y) − ∂α

x f(x) ∫
Rn

|Jε(y)|dy∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣Ω 是开集，如果 f(x) ∈ C k(Ω)，则对 Ω 内的任一紧集 K，可以构造一族光滑紧支集函数 f̃ε 使得对于任
意的 a ∈ Nn，|α| ≤ k，有

∂α
x f̃ε(x) → ∂α

x f(x) (ε → 0+)

(推论)  偏导的光滑一致逼近



sup
|x−y|<ε

∂α
y f̃(y) − ∂α

x f(x) = sup
|x−y|<ε

∂α
y f(y) − ∂α

x f(x) → 0(ε → 0)

所以我们知道一致趋于零. ∣ ∣ ∣ ∣⚠️注意：

我们需要解释其中一步，即

(−1)|α| ∫
Rn

f̃(y)∂α
y Jε(x − y)dy = ∫

Rn

∂α
y f̃(y)Jε(x − y)dy

这个公式的成立是基于高维空间中的分部积分法，可以这么干是因为有紧支集，所以边界项实际为 0 了.

✏️笔记：

这个公式在现代数学分析中至关重要，因为它正是弱导数的定义方式。

函数 f̃ 可能不是传统意义上可微的（例如，它可能在某些点有尖角或跳跃）。然而，我们可以通过这个
积分公式来定义它的导数。

我们称函数 g 是 f̃ 的 α-阶弱导数（记作 g = ∂αf̃），如果对于所有光滑且具有紧支撑的“测试函数” ϕ（在
我们的例子中，Jε(x − y) 就扮演了这个角色），以下等式都成立：

∫
Rn

g(y)ϕ(y)dy = (−1)|α| ∫
Rn

f̃(y)∂αϕ(y)dy

所以，公式实际上可以看作是用光滑的磨光核 Jε 来定义（或计算）函数 f̃ 的弱导数 ∂α
y f̃。这种“通过积

分将导数作用转移到光滑函数上”的方法，是处理非光滑函数求导的核心工具。

✏️笔记：

假设 f ∈ Lp(Rn) 并且 g ∈ Lq(Rn)。设 1 ≤ p, q, r ≤ ∞ 并且满足以下关系：

1

p
+

1

q
= 1 +

1

r

那么，它们的卷积 (f ∗ g)(x) = ∫
Rn

f(y)g(x − y)dy 是良定义的（对于几乎所有的 x），并且属于 Lr(Rn)

空间。其 Lr 范数满足以下不等式：

∥f ∗ g∥Lr ≤ ∥f∥Lp∥g∥Lq

(引理)  卷积的You ng不等式



特例 1：q = 1

如果 g ∈ L1(Rn)，那么条件变为 
1

p
+ 1 = 1 +

1

r
，这意味着 r = p。

不等式变为：

∥f ∗ g∥Lp ≤ ∥f∥Lp∥g∥L1

这是最常用的一个版本。它说明，用一个 L1 函数去卷积一个 Lp 函数，得到的结果仍然是一个 Lp 函
数，并且其范数被两个原始函数的范数乘积所控制。这在偏微分方程中，当 g 是一个基本解（通常是 L1

函数）时尤其有用。

特例 2：r = ∞

如果我们想让卷积结果 f ∗ g 是一个有界函数（属于 L∞），那么 
1

r
= 0。

条件变为 
1

p
+

1

q
= 1。这组 (p, q) 是一对共轭指数（与赫尔德不等式中的指数相同）。

不等式变为：

∥f ∗ g∥L∞ ≤ ∥f∥Lp∥g∥Lq

这说明，如果 f ∈ Lp 且 g ∈ Lq 并且 p, q 是共轭的，那么它们的卷积是一个有界连续函数。

证明：

前两个结果在前面已经证明，现在证明第三个结果. 首先我们使用卷积的 Young 不等式，所以自然有

||uε||Lp = ||u ∗ Jε||Lp ≤ ||u||Lp ⋅ ||Jε||L1 = ||u||Lp

而

uε(x) − u(x) = ∫
Rn

u(y)Jε(x − y)dy − ∫
Rn

u(x)Jε(x − y)dy = ∫
Rn

(u(y) − u(x))Jε(x − y)dy

所以我们有

我们记两个区域 Ω1 ⊂⊂ Ω2，若 Ω1 ⊂ Ω1 ⊂ Ω∘
2，并且 Ω1 是紧的.––

u(x) ∈ L
1
loc(Rn)，可以定义 uε(x) = Jε(x) ∗ u(x)，我们有结论：

（1）若 u ∈ L
1
loc(Rn)，则 uε = Jε ∗ u ∈ C∞(Rn).

（2）若 u ∈ Lloc(Rn)，supp u ⊂ K ⊂⊂ Ω，且 dist(supp u, ∂Ω) > ε，则 uε = Jε ∗ u ∈ C∞
0 (Rn).

（3）u ∈ L
p(Ω)(1 ≤ p < ∞)，则 uε = Jε ∗ u ∈ L

p(Ω)，且

||uε||Lp ≤ ||u||Lp , lim
ε→0+

||uε − u||Lp = 0

(定义)  紧包含

(定理)  磨光的性质



1 .2 .2 截断函数

我们现在来构造截断函数：对于 K ⊂⊂ Ω，取 Kε0  上的特征函数 χ(x)，对 ε ≤ ε0我们令

fε = Jε ∗ χ

我们自然有 fε(x) ∈ C∞
0 (Ω)，并且 supp fε ⊆ K2ε0

，所以是截断函数.

||uε − u||
p
Lp ≤ ∫

Rn

∫
Rn

(u(y) − u(x))Jε(x − y)dy
p

dx

由于

∫
Rn

(u(y) − u(x))Jε(x − y)dy = ∫
|x−y|≤ε

(u(y) − u(x))Jε(x − y)dy

由积分的绝对连续性，知道

lim
ε→0+

∫
Rn

(u(y) − u(x))Jε(x − y)dy = lim
ε→0+

∫
|x−y|≤ε

(u(y) − u(x))Jε(x − y)dy = 0

并且我们知道

∫
Rn

(u(y) − u(x))Jε(x − y)dy ≤ |uε(x)| + |u(x)|

右边是 Lp 可积函数，所以是控制函数，所以由 DCT 我们知道

lim
ε→0+

||uε − u||p
Lp = 0∣ ∣∣ ∣

证明：

考虑 K ⊂⊂ Ω 为紧集，称 f(x) 为截断函数，如果 f 满足 f(x) ∈ C∞
0 (Ω) 并且

f(x) = {1, x ∈ K

0, x ∉ K2ε0

我们可以对这样的截断函数作估计，对于固定的 α ∈ Nn，存在常数 C 使得

|∂α
x f(x)| ≤ C ⋅ ε−|α|

(定义)  截断函数

(定理)  Th m
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于是有，当 |α| = 1 时，对于截断函数 f(x) ∈ C∞
0 (Rn)，满足

f(x) = {

其中 Ω1 ⊂ Ω2，并且 dist (Ω1, Ω2) = d > 0，则有

|∇f(x)| ≤
C

d

其中 C 只和 f 有关.

1 .2 .3 单位分解

直接计算

于是，我们可以知道

∂α
x f(x) = ∂α

x ∫
Rn

χ(y)Jε(x − y)dy

= ∂α
x ∫

Rn

χ(y)
1

εn
J ( x − y

ε
)dy

= ε−|α| ∫
Rn

1

εn
χ(y)(∂α

x J)( x − y

ε
)dy

|∂α
x f(x)| ≤ ε−|α| 1

εn
∫

Rn

(∂α
x J)(

x − y

ε
) dy

= ε−|α| ∫
R

|(∂α
x J) (y)|dy = Cε−|α|∣ ∣1, x ∈ Ω1

0, x ∉ Ω2

证明：

只考虑 n ≥ 2 . 我们逐个构造 Vi .

闭集 X ∖ ⋃
i≥2

Ui ⊆ U1 . 由 X 正规，取开集 V1 使得 X ∖ ⋃
i≥2

Ui ⊆ V1 ⊆ V1 ⊆ U1，则 V1 ∪ ⋃
i≥2

Ui = X .

设 1 ≤ k ≤ n − 1 且已取定使得开集 V1,V2, ⋯ ,Vk 满足 ⋃
i≤k

Vi ∪ ⋃
i>k+1

Ui = X 并且对每个 i ≤ k 有Vi ⊆ Ui ，

则闭集 X ∖(⋃
i<k

Vi ∪ ⋃
i>k+2

Ui) ⊆ Uk+1 .

由 X 正规，取开集 Vk+1 使得 X ∖(⋃
i≤k

Vi ∪ ⋃
i≥k+2

Ui) ⊆ Vk+1 ⊆ Vk+1 ⊆ Uk+1 ，则

⋃
i<k+1

Vi ∪ ⋃
i>k+2

Ui = X .

–

–

–

设 X 为正规空间, U1,U2, ⋯ ,Un ⊆ X 为开集, ⋃
i≤n

Ui = X . 则存在开集 V1,V2, ⋯ ,Vn 使得 ⋃
i≤n

Vi = X 并且

对每个 i ≤ n 有Vi ⊆ Ui .
–

(引理)  收缩引理

af://h5-6


这样便依次得到 V1,V2, ⋯ ,Vn ，使得 ⋃
1≤i≤n

Vi = X 并且对每个 i ≤ n，有 Vi ⊆ Ui .
–

证明：

因为 K ⊂ Rn 仍然正规，由引理，我们做出有限多个开集 D1, ⋯ ,DN  使得 Di ⊂ Di ⊂ Ui，使得
{Di}

N
i=1 还是一个开覆盖.

由于 Di ⊂⊂ Ui，我们可以做出 Di 的截断函数 ζi ∈ C∞
0 (Ui)，使得 ζi(x) ≥ 0 在 Ui 上成立，并且在 Di

上为正，由于 K ⊂
N

⋃
i=1

Di，所以 
N

∑
i=1

ζi(x) > 0，∀x ∈ K，于是可以令

ηi(x) =
ζi(x)

∑N
i=1 ζi(x)

于是自然有 
N

∑
i=1

ηi(x) = 1，∀x ∈ K.

–

证明：

令 X 为一个这样的空间，由于 X 是一个局部紧 Hausdorff 空间，所以存在一个预紧开集基，再由第二
可数性质知道存在可数的预紧开集基，令 {Ui}

∞
i=1 为这个预紧开集基.

令 K1 = U1，下面归纳定义，假设 K1, ⋯ ,Kk 满足 Uj ⊂ Kj，并且 Kj−1 ⊂ K ∘
j，j = 1, ⋯ , k. 现在我

们来定义 Kk+1，由于 Kk 是紧的，所以存在 mk 使得 K1 ⊂
mk

⋃
j=1

Uj，令 Kk+1 =
mk

⋃
j=1

Uj，并且满足 Kk+1 是紧

集，并且 Kk ⊂ K ∘
k+1. 所以我们得到一个紧穷竭.

–

–

设 K 为 Rn 中的紧集，U1, ⋯ ,Uk 为 K 的一个开覆盖，则存在函数 η1 ∈ C∞
0 (U1), ⋯ , ηN ∈ C∞

0 (UN)，

使得

（1）0 ≤ ηi(x) ≤ 1，∀x ∈ Ui，i = 1, ⋯ ,N .

（2）
N

∑
i=1

ηi(x) = 1, ∀x ∈ K.

第二可数，局部紧的 Hausdorff 空间存在一个紧穷竭，即存在紧集 Ki ⊂ K ∘
i+1 使得 X =

∞

⋃
i=1

Ki.

(定理)  紧集上的单位分解

(引理)  L em



1 .2 .4 修正磨光

由磨光算子的定义可以看出磨光函数在某点的值依赖于函数本身在这点附近的值. 因此用光滑函数在边界附近去
逼近一给定函数并不合适. 为此，我们可以先延拓给定的函数然后磨光，有时也可以采用下面的修正磨光法(上
面引进的磨光法也称为标准磨光法).

作为例子，我们取区域为

Q = {x ∈ Rn; |xi| < 1, i = 1, 2, ⋯ ,n}

而考虑 Q 的顶边

{x ∈ Rn;xn = 1, |xi| < 1, i = 1, ⋯ ,n − 1}

和底边

{x ∈ Rn;xn = −1, |xi| < 1, i = 1, ⋯ ,n − 1}

附近的磨光.

证明：

由于 Ω 继承 Rn 的拓扑，知道 Ω 自然是一个第二可数的，局部紧的 Hausdorff 空间，所以存在一个紧

穷竭 Ω =
∞

⋃
k=1

Ak，此时有 Aj − A∘
j−1 是紧集，A∘

j+1 − Aj−2 是开集，有

Aj − A∘
j−1 ⊂⊂ A∘

j+1 − Aj−2

并且结合 {Ui ∩ (Aj+1 − A∘
j−2) ∣ i ∈ I} 为紧集 Bj = Aj − A∘

j−1 的开覆盖，所以我们可以做 Bj 从属于这个开
覆盖的一个单位分解 Φj = {φ(j)

α }.

对于任意的 x ∈ Ω，我们知道存在 j 使得 x ∈ Bj，并且 x ∉ Bk，其中 k ≥ j + 2，于是对于 Φk 中的
φ

(k)
α ，有 φ(k)

α (x) = 0. 所以我们有

σ(x) := ∑
α,j

φ
(j)
α (x)

在任意 x 附近都是有限和，从而 σ(x) 有意义，令

φα(x) =
∑j φ

(j)
α (x)

σ(x)

则 {φα ∣ α ∈ I} 即为我们所求单位分解.

设 Ω ⊂ Rn 为开集，{Ui}i∈I  为 Ω 的开覆盖，一族 C∞
0  函数 {φα}α∈I  称为从属于 {Ui}i∈I  的单位分解，如

果满足：

（1）0 ≤ φα ≤ 1

（2）{supp φα}α∈I  是 {Ui}i∈I  的局部有限加细.

（3）∑
α∈I

φα(x) ≡ 1.

(定理)  一般情况的单位分解
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观察核函数项：jϵ(xn − yn + 2ϵ)。 为了让这个核函数非零，我们需要自变量在 (−ϵ, ϵ) 之间，即：

−ϵ < xn − yn + 2ϵ < ϵ

解出 yn 的范围：

xn + ϵ < yn < xn + 3ϵ

容易验证, J−
ε u (x) 在 Q 的顶边上有定义,而 J+

ε u (x) 在 Q 的底边上有定义.

1 .2 .5 区域边界的局部拉平

在边值问题中总是要讨论区域边界上的光滑性，而边界上的光滑性一般是通过局部拉平来定义的：

1.3 广义函数

1 .3 .1 基本定义

⚠️注意：

这不是我们微分流形的带边流形吗？

设 u ∈ L1 (Q) ,定义

J−
ε u (x) = ∫

Q

jε (x1 − y1) ⋯ jε (xn−1 − yn−1)jε (xn − yn − 2ε)u (y)dy

J+
ε u (x) = ∫

Q

jε (x1 − y1) ⋯ jε (xn−1 − yn−1)jε (xn − yn + 2ε)u (y)dy

其中 jε (τ) 为一维磨光核.

设 Ω ⊂ Rn 为一有界区域，称 ∂Ω 具有 C k 光滑性，记为 ∂Ω ∈ C k，如果对任意的 x0 ∈ ∂Ω，存在 x0 的
一个邻域 U  和一个 C k 的可逆映射 Ψ:U → B1(0)，使得

Ψ(U ∩ Ω) = B+
1 (0) = {y ∈ B1(0), yn > 0}

Ψ(U ∩ ∂Ω) = ∂B+
1 (0) ∩ {y ∈ Rn, yn = 0}

(定义)  修正磨光

(定义)  局部拉平
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我们常省略连续两字而简称为线性泛函，连续性有一个等价写法为：

（3）对于任意的紧集 K ⊂ Ω，必然存在常数 c 与非负整数 k 使得

|l(φ)| ≤ c ∑
|α|≤k

sup |∂αφ|, ∀φ ∈ C∞
0 (K)

下面我们来说明 (2) 与 (3) 是等价的：

证明：

(3) 推 (2): 任取 φm → 0，由定义我们知道存在紧集 K ⊂ Ω 使得对于所有的 m，都有 supp φm ⊂ K，
并且对于任意固定的 α ，有 ∂αφm 在 K 上一致收敛到 0，即

sup
x∈K

|∂αφm| = sup
x∈Rn

|∂αφm(x)| → 0

所以由 (3) 自动有 ⟨l,φm⟩→ 0.

(2) 推 (3): 反证，假设不等式不成立，即存在某个紧集 K 使得对于任意常数 c 和整数 k，都存在一个
函数 φ(x) ∈ C∞

0 (K) 并且有

|l(φ)| > c ∑
|α|≤k

sup |∂αφ|

不妨令 c = k = j，从而有

|l(φj)| > j ∑
|α|≤j

sup |∂αφj|

用 
φj

|⟨l,φj⟩|
 替代 φj，有

1 > j ∑
|α|≤j

sup |∂αφj|

我们称 C∞
0 (Ω) 为 Ω 上的光滑紧支集函数，函数序列 {φn} 在 C∞

0 (Ω) 中收敛到零定义为：
（1）存在一个紧集 K ⊂ Ω 使得 supp φn ⊂ K 对所有 n 成立.
（2）φn 的固定阶偏导对 x 一致收敛到 0（不要求对阶数有一致性）.
C∞

0 (Ω) 赋予上述收敛之后称为 D(Ω) 空间，D(Ω) 中的元素被称为试验函数.

广义函数即 D(Ω) 上的连续线性泛函，l，即有
（1）对于实数或者复数 c1, c2，有

l (c1φ1 + c2φ2) = c1l(φ1) + c2l(φ2)

（2）如果在 D  中 φj → 0，则 l(φj) → 0，我们也常将 l(φ) 写作 ⟨l,φ⟩.
我们将所有广义函数构成的集合记为 D ′(Ω).

(定义)  试验函数空间

(定义)  广义函数



广义函数作为线性泛函，其线性运算，如加法与数乘的定义是自明的。

于是有

|∂αφj| ≤
1

j

对于任意的 |α| ≤ j 成立，于是由定义我们知道 φj → 0，但是我们知道 ⟨l,φj⟩ = 1，也就是说 l 不是连续泛
函，矛盾.

如果 f(x) 是 Ω 上的局部可积函数，则对任意的 φ ∈ C∞
0 (Ω)，

⟨f,φ⟩ = ∫ f(x)φ(x)dx

这个积分实际上是在 Ω 上的紧子集 supp φ 上积分，因而是有意义的. 所以我们知道每一个局部可积函数
都可以生成一个线性泛函，我们记为 f，这种广义函数称之为正则广义函数.

🕹️ 例子： 正则广义函数

我们定义 Dirac 函数 δ 为任意的 φ ∈ C∞
0 (Rn)，使得

δ(φ) = φ(0)

很容易证明这确实是一个线性泛函，也即广义函数，我们知道 δ 有一种奇异性，从而决不存在一个局部
可积函数 f 按照上面积分的方式生成 δ，所以广义函数确实推广了函数的概念，称正则广义函数以外的
广义函数为奇异广义函数.

🕹️ 例子： Dirac 函数

如果对于一切的 φ ∈ C∞
0 (U) 都有 ⟨u,φ⟩ = 0，则称广义函数 u 在 U  上为 0.

广义函数 u 的支集 suppu 是 u 在其上为 0 的最大开子集的余集，我们知道 supp u 恒为闭集.

(定义)  0 广义函数

(定义)  广义函数的支集



1 .3 .2 微分运算与乘子运算

广义函数的微分思想来自于紧支集光滑函数的分部积分公式，考虑光滑函数 f 和光滑紧支集函数 φ ，有

∫
R
f ′(x)φ(x)dx = f(x)φ(x)|+∞

−∞ − ∫
R
f(x)φ′(x)dx = −∫

R
f(x)φ′(x)dx

第二个等式是因为 φ(x) 是紧支集的，所以边界项是零，现在我们可以借助这个想法来定义广义函数的导数.

证明：

前一部分是自明的，现在我们来证明后一部分，即广义函数实际上满足层的唯一性.
对于任意的 φ ∈ D(Ω)，令 K = supp φ，则存在 {Uα} 的有限子覆盖 {U1, ⋯ ,Uk}，我们作其单位分解
ψ1, ⋯ ,ψk，有

φ = φ

k

∑
j=1

ψj =
k

∑
j=1

φψj =
k

∑
j=1

φj, φj = φψj

我们自然有 supp φj ⊂ supp ψj ⊂ Uj，由于 u|Uj = 0，所以我们自然有

⟨u,φ⟩ =
k

∑
j=1

⟨u,φj⟩ = 0

从而知道 u = 0.

两个广义函数 u1,u2 之差 u1 − u2 若在 U  上为 0，则说明 u1 与 u2 在 u 上相等.

若 u 在 Ω 上为 0，则其在 Ω 上的任一开子集上的限制为 0，反之若 Ω 有一个开覆盖 {Uα}，并且

u|Uα
= 0 对于任意的 α 成立，则 u = 0.

广义函数 f(x) ∈ D
′(Ω) 的导数 

∂f

∂xj
∈ D

′(Ω)，定义为

⟨ ∂f

∂xj

,φ⟩ = (−1)⟨f,
∂φ

∂xj

⟩

(定义)  广义函数相等

(定理)  (局部化原理)

(定义)  广义函数的导数
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我们还可以定义其上的线性运算，对于实数 c1, c2，f1, f2 ∈ D
′(Ω)，对于任意的 φ ∈ C∞

0 (Ω)，定义

⟨c1f1 + c2f2,φ⟩ := c1⟨f1,φ⟩+ c2⟨f2,φ⟩

对于 C∞ 系数微分算子 P(x, ∂x) = ∑
|α|≤m

aα(x)∂α
x，f ∈ D

′(Ω)，φ ∈ D(Ω)，有

其中 P t 为 P  的转置算子，如果硬要写的话就是 P t(x, ∂x) = ∑
|α|≤m

(−1)|α|∂α
x (aα(x) ⋅ −).

⟨P(x, ∂x)f,φ⟩ = ⟨∑
|α|≤m

aα(x)∂α
x f,φ⟩

= ∑
|α|≤m

⟨aα(x)∂α
x f,φ⟩

= ∑
|α|≤m

⟨∂α
x f, aα(x)φ⟩

= ∑
|α|≤m

(−1)|α|⟨f, ∂α
x (aαφ)⟩

= ⟨f, ∑
|α|≤m

(−1)|α|∂α
x (aαφ)⟩

= ⟨f,P t(x, ∂x)φ⟩

H(x) = {

我们有

⟨H ′,φ⟩ = −⟨H,φ′⟩ = −∫
∞

0
φ′(x)dx = φ(0)

所以有

H ′(x) = δ(x)

🕹️ 例子： Heaviside 函数：

1, x > 0
0, x < 0

任何广义函数 f ∈ D
′(Ω) 可以微分任意多次，并且有

⟨∂αf,φ⟩ = (−1)|α|⟨f, ∂αφ⟩

a(x) ∈ C∞(Ω) 称为一个 D ′(Ω) 乘子，可以对任一 u(x) ∈ D
′(Ω) 定义乘子运算 a ⋅ u

⟨au,φ⟩ = ⟨u, aφ⟩

(定理)  广义函数的微分

(定义)  广义函数的乘子运算



1 .3 .3 极限运算

设有一个 D ′(Ω) 广义函数序列 {fn}，我们可以定义其收敛性

在 n > 1 维情况的推广为

H(x) = {

则我们有

∂nH(x)

∂x1∂x2 ⋯ ∂xn
= δ(x)

1, xi > 0, i = 1, 2, ⋯ ,n
0, otherwise

证明：

任取 φ ∈ D(Ω)，我们有

⟨∂αfn,φ⟩ = (−1)|α|⟨fn, ∂αφ⟩

由假设我们知道 fn → f 作为广义函数弱* 逼近，而 ∂αφ ∈ D(Ω)，于是自然有

lim
n→∞
⟨∂αfn,φ⟩ = lim

→∞
(−1)|α|⟨fn, ∂αφ⟩ = (−1)|α|⟨f, ∂αφ⟩ = ⟨∂αf,φ⟩

所以得证.

例如取 fε(x) = { ，我们求其逐点极限和弱星收敛极限.

逐点收敛的情况下，对于 ∀x ≠ 0，显然有 lim
ε→0

fε(x) = 0，对于 x = 0，我们有 lim
ε→0

fε(0) = +∞.

🕹️ 例子： 逐点收敛极限和弱star极限

0, |x| ≥ ε
1

2ε
, |x| < ε

在 D ′ 中 fn → f 是指对于任意的 φ ∈ D(Ω) 均有

lim
n→∞
⟨fn,φ⟩ = ⟨f,φ⟩

这样的收敛我们称之为弱*收敛.

设 fn ∈ D
′(Ω)，fn → f 弱*收敛，则对于任意固定的 α 有 ∂αfn → ∂αf 弱星收敛.

(定义)  Def

(定理)  Th m
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通过上面的例子，同理我们有：

1 .3 .4 紧支集广义函数

对于 D ′ 中的广义函数，其本意是定义在紧支集光滑函数上的泛函，但是对没有紧支集的函数 φ 而言，有些情况
下可能也可以作用，比如对于 u ∈ D

′，当 K = supp u ∩ supp φ 是紧集的时候，我们可以作一个在 K 上为 1 的
截断函数 α(x) ∈ D，则有

φ(x) = α(x)φ(x) + (1 − α)φ(x)

此时 αφ ∈ D，因此 ⟨u,αφ⟩ 有意义，而对于任意的 x ∈ supp u，有

(1 − α(x))φ(x) = {

所以第二项在 supp u 附近恒为 0，因此

⟨u, (1 − α)φ⟩ = 0

所以我们就可以定义

⟨u,φ⟩ = ⟨u,αφ⟩

并且可以证明这种定义出来的值与 α 的选择无关，因为若 α,β 都是满足在 K 上为 1 的截断函数，则有

⟨u, (α − β)φ⟩ = 0

这是因为

(α − β)φ

在 supp u 的附近恒为 0. 于是总是有

⟨u,αφ⟩ = ⟨u,βφ⟩

所以良定义.

于是我们可以按照这种方法将 u 的作用推广到 C∞ 函数上去，为了满足

K = supp u ∩ supp φ

对于任意的 φ ∈ C∞ 都是紧集，我们只需要要求 u 是紧支集的即可，于是有下面的定义：

对于任意的 φ ∈ C∞
0 ，我们有

lim
ε→0
⟨fε,φ⟩ = lim

ε→0
∫ f(x)φ(x)dx = lim

ε→0
∫

|x|≤ε

φ(x)

2ε
dx = φ(0)

所以我们知道 fε 的弱星收敛极限是 Dirac 函数 δ.

(1 − 1)φ(x) = 0, x ∈ K

(1 − α(x))0 = 0, x ∈ supp u − K ⟹ x ∉ supp φ

设 Φε(x) 为磨光核，我们有弱 ∗ 收敛： Φε(x) → δ.

(定理)  Th m
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由此可知 E ′(Ω) ⊂ D
′(Ω). 所以，前面各节中所讲的关于广义函数的运算、性质等等对于 E ′(Ω) 之元也都成立. 又

uj → 0 于 E ′(Ω) 中即对于任意 φ ∈ E (Ω)，皆有 ⟨uj,φ⟩→ 0. 但 D(Ω) ⊂ E (Ω)，所以对任一个 φ ∈ D(Ω) 也有
⟨uj,φ⟩→ 0. 所以又有 uj → 0 于 D ′(Ω) 中. 所以不但作为一个集合 E ′(Ω) 包含于 D ′(Ω) 中而且 E ′(Ω) 中的极限关
系在 D ′(Ω) 中也得以保持（所以前述 D ′(Ω) 的极限的性质对 E ′(Ω) 依然成立），这种情况称为 E ′(Ω) 连续嵌入
在 D ′(Ω) 中，记作

E
′(Ω) ↪ D

′(Ω)

证明：

设 u ∈ D
′(Ω)，且 suppu 为紧，则可取 χ ∈ C∞

0 (Ω)，且 χ(x) = 1 于 suppu 的某个邻域上，记
K = suppχ，对任意 φ ∈ E (Ω)，由广义函数的连续性有

因此 u ∈ E
′(Ω). 反之，若 u ∈ E

′(Ω)，因此自然地有 u ∈ D
′(Ω). 今证 suppu 为紧. 用反证法. 设 suppu

非紧，因而无界（紧集即有界闭集，所以 suppu 非紧时必为无界），所以一定有 φj(x) ∈ E (Ω)，而
suppφj ⊂ suppu ∩ {x; |x| > j}，使 ⟨u,φj⟩ ≠ 0. 同时，不妨设 ⟨u,φj⟩ = 1. 但若取任一紧集 K ⊂ Ω，必有正
整数 N  使 K ⊂ {x; |x| ⩽ N}. 所以凡 j > N  必有 φj ≡ 0 于 K 中，即知 φj → 0 于 E (Ω) 中，而应有
⟨u,φj⟩→ 0，这与 ⟨u,φj⟩ = 1 矛盾. 所以 E ′(Ω) 之元必为 D ′(Ω) 之元而有紧支集者.

|⟨u,φ⟩| = |⟨u,χφ⟩|

⩽ C ∑
|α|⩽k

sup |∂α(χφ)|

⩽ C ′ ∑
|α|⩽k

sup |∂αφ|,

空间 E (Ω) 是对 C∞(Ω) 空间赋以下面规定的收敛性以后所成的空间：φj(x) → 0 于 E (Ω) 中即在任一紧
集 K ⊂ Ω 中对任一选定的重指标 α，∂αφj(x) 皆为一致收敛于 0. E (Ω) 上的线性连续泛函之集记作 E ′(Ω)

，其元即称为 E ′(Ω) 广义函数. 这些泛函的连续性（即当 φj → 0 于 E (Ω) 时，有 ⟨u,φj⟩→ 0,u ∈ E
′(Ω)）

等价于下面的形式表述：存在常数 C，整数 m ⩾ 0 以及紧集 K ⊂ Ω 使

|⟨u,φ⟩| ⩽ C ∑
|α|⩽m

sup
x∈K

|∂αφ(x)|, φ ∈ E (Ω)

E
′(Ω) = {u;u ∈ D

′(Ω), suppu ⊂⊂ Ω}.

设 u ∈ D
′(Ω)，Ω 及 Ω1 为 Rn 中的开集，且 Ω1 ⊂⊂ Ω，则可以找到一个支集在 Ω1 的某一邻域中的连续

函数 f 和整数 m ⩾ 0，使得在 Ω1 上

–

(定义)  紧支集广义函数

(定理)  紧支集广义函数的刻画

(定理)  广义函数的局部刻画



1 .3 .5 广义函数与函数的卷积

一个重要的例子是对于 Dirac 函数 δ，有

(δ ∗ f)(x) = ⟨δ, f(x − ∙)⟩ = f(x)

需要注意的是，函数与广义函数的卷积不是交换的！

⚠️注意：

定理中的偏导是广义函数意义的偏导，即

⟨u,φ⟩ = ⟨f,
∂mnφ

∂xm
1 ⋯ ∂xm

n

⟩

u =
∂mnf

∂xm
1 ⋯ ∂xm

n

对 u ∈ E
′(Ω) 必可找到若干个连续函数 fα 使在 Ω 上

u = ∑
|α|⩽r

∂αfα(x)

给定 f ∈ D
′(R)，g ∈ C∞

0 (Rn)(或者 f ∈ E
′(Rn)，g ∈ C∞(Rn))，则可以定义 f, g 的卷积为

(f ∗ g)(x) := ⟨f(∙), g(x − ∙)⟩

设 ω ⊂ Rm 为开集，φ(x, y) ∈ C∞(Ω × ω) 且有紧集 K ⊂ Ω 使得当 x ∉ K 时有 φ(x, y) = 0 对于任意的

y ∈ ω 成立. 如果 u ∈ D
′(Ω)，则函数

y ↦ ⟨u,φ(∙, y)⟩

是一个 C∞ 函数，并且有

∂α
y ⟨u,φ(∙, y)⟩ = ⟨u, ∂α

y φ(∙, y)⟩

(定理)  紧支集广义函数的刻画

(定义)  广义函数与函数的卷积

(引理)  L em
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证明：

对固定 y ∈ ω,φ(⋅, y) ∈ C∞
0 (Ω)，它关于 y 的泰勒展开式是

φ(x, y + h) = φ(x, y) +
m

∑
j=1

hj∂yjφ(x, y) + ψ(x, y,h),

其中 ψ(⋅, y,h) ∈ C∞
0 (Ω)，且

sup
x

|∂α
xψ(x, y,h)| = O(|h|2), 当 h → 0,  ∀α.

因为 |⟨u,ψ(⋅, y,h)⟩| ⩽ c ∑
|α|⩽k

sup
x

|∂α
xψ(x, y,h)|，故 ⟨u,ψ(⋅, y,h)⟩ = O(|h|2)。所以

⟨u,φ(⋅, y + h)⟩ = ⟨u,φ(⋅, y)⟩+ ∑hj⟨u, ∂yjφ(⋅, y)⟩+ O(|h|2),

故函数 ⟨u,φ(⋅, y)⟩ 是可微的，且有

∂

∂yj
⟨u,φ(⋅, y)⟩ = ⟨u, ∂yjφ(⋅, y)⟩,

用归纳法便可证明第二个等式.

证明：

（1）由上面引理是显然的. 取 φ(∙, y) = φ(y − ∙) 即可.

（2）设 x ∉ supp f + supp φ，则很显然不存在 y 使得 y ∈ supp f 并且 x − y ∈ supp φ，而
supp φ(x − ∙) = x − supp φ，也就是说 supp φ(x − ∙) ∩ supp f = ∅，所以

(f ∗ φ)(x) = ⟨f,φ(x − ∙)⟩ = 0

所以我们有 supp f ∗ φ ⊂ supp f + supp φ.

（3）由上面的引理，我们知道

∂α(f ∗ φ)(x) = ∂α⟨f,φ(x − ∙)⟩ = ⟨f, ∂αφ(x − ∙)⟩ = ⟨∂αf,φ(x − ∙)⟩

所以成立.

⚠️注意：

如果 f ∈ D
′(Rn),φ ∈ C∞

0 (Rn)(或者 f ∈ E
′(Rn),φ ∈ C∞(Rn))，则

（1）f ∗ φ ∈ C∞(Rn).

（2）supp f ∗ φ ⊂ supp f + supp φ.

（3）∂α(f ∗ g) = f ∗ ∂αφ = (∂αf) ∗ φ

(定理)  广义函数与函数卷积的性质



下面我们尝试说明卷积的运算是结合的，为此需要先介绍一个引理：

由此我们甚至有，如果 α = α1 + α2，则

∂α(f ∗ φ) = (∂α1f) ∗ (∂α2φ)

证明：

⟨u,φ(⋅, y)⟩ 是光滑函数，且其支集含于 K2，所以是可积的. 为简便计可扩展 K2 为 m 维正方体 ~
K2，则

积分可取在 ~
K2 上. 等分 ~

K2 为边长为 h 的小正方体，可作黎曼和

∑
k∈Zm

⟨u,φ(⋅, kh)⟩hm = ⟨u, ∑
k∈Zm

φ(⋅, kh)hm⟩,

令 h → 0，则一方面 ∑⟨u,φ(⋅, kh)⟩hm → ∫ ⟨u,φ(⋅, y)⟩dy. 另一方面

ψh(x) = ∑
k∈Zm

φ(⋅, kh)hm → ∫ φ(x, y)dy,

不但如此，还可证明这里的收敛性是 D(Ω) 中的收敛性. 这首先是因为 suppψh 及 supp∫ φ(x, y)dy 都

包含在 K1 内，φ(x, y) 在 K1 × K2 上是一致连续的，因此，上式的收敛性关于 x 是一致的，此外对任意重
指标 α 又可证明当 h → 0 时，对 x ∈ K1 一致地有

∂αψh(x) → ∫ ∂α
xφ(x, y)dy.

于是知道上式是 D(Ω) 中的收敛性，所以成立.

✏️笔记：

我们可以这样子理解他：

∫ ⟨f,φ(x)⟩ψ(x)dx = lim∑⟨f,φ(xi)⟩ψ(xi)Δxi

= lim⟨f,∑φ(xi)ψ(xi)Δxi⟩

= ⟨f,∫ φ(x)ψ(x)dx⟩

设 Ω ⊂ R
n, ω ⊂ R

m 为开集，φ ∈ C∞
0 (Ω × ω) 且 suppφ ⊂ K1 × K2，这里 K1 ⊂ Ω,K2 ⊂ ω 为紧集，如

果 u ∈ D
′(Ω)，则

∫ ⟨u,φ(⋅, y)⟩dy = ⟨u,∫ φ(⋅, y)dy⟩

(引理)  L em



1 .3 .6 广义函数的正则化

证明：

f ∗ ψ ∈ C∞(R
n),ψ ∗ φ ∈ C∞

0 (R
n),

((f ∗ ψ) ∗ φ)(x) = ∫ ⟨f(⋅),ψ(z − ⋅)⟩φ(x − z)dz

= ⟨f(⋅),∫ ψ(z − ⋅)φ(x − z)dz⟩

= ⟨f(⋅),∫ ψ(x − u − ⋅)φ(u)du⟩

= ⟨f(⋅), (ψ ∗ φ)(x − ⋅)⟩

= (f ∗ (ψ ∗ φ))(x).

证明：

任取磨光核 φε(x)，我们定义反射 φ̌(x) = φ(−x)，现在任取 ψ(x) ∈ D(Rn)，对于任一广义函数
T ∈ D

′(Rn)，有

(T ∗ ψ)(0) = ⟨T (∙),ψ(−∙)⟩ = ⟨T , ψ̌⟩

所以我们有

由于 φ̌ε 仍然是磨光核，所以我们知道在 D(Rn) 中有

φ̌ε ∗ ψ → ψ

从而我们有

⟨f ∗ φε,ψ⟩ = ((f ∗ φε) ∗ ψ̌)(0)

= (f ∗ (φε ∗ ψ̌))(0)

= ⟨f,
ˇ

φε ∗ ψ̌⟩

= ⟨f, φ̌ε ∗ ψ⟩

若 φ,ψ ∈ C∞
0 (Rn)，且 f ∈ D

′(Rn)，则有

(f ∗ ψ) ∗ φ = f ∗ (ψ ∗ φ)

f ∈ D
′(Rn)，Φε 为磨光核，则 fε = f ∗ Φε ∈ C∞(Rn) 在 D ′(Rn) 意义下收敛到 f.

(定理)  DCC 式的卷积是结合的

(定理)  Th m
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1 .3 .7 广义函数与广义函数的卷积

首先说明一下，广义函数作为 D(R
n) 上的泛函，对任意 φ ∈ C∞

0 (R
n)，⟨u,φ⟩ 确定为一实数（或复数），且若

u1,u2 ∈ D
′(R

n)，对任意 φ ∈ C∞
0 (R

n)，使 ⟨u1,φ⟩ = ⟨u2,φ⟩，则 u1 = u2. 但我们还可以用卷积给出 u1 = u2 的
另一种条件. 我们知道对于 u ∈ D

′(R
n), φ ∈ C∞

0 (R
n),

⟨u,φ⟩ = (u ∗ φ̌)(0)

所以对于 u1,u2 ∈ D
′(R

n)，可从等式

u1 ∗ φ = u2 ∗ φ, ∀φ ∈ C∞
0 (R

n)

推出 u1 = u2.

两个广义函数卷积的定义，可由 D ′ 广义函数与 C∞
0  函数卷积定义推广而得. 如果 f ∈ D

′(R
n)， g,φ ∈ C∞

0 (R
n)

，则知

但是此式右方即使 g 不是 C∞
0 (R

n) 函数也可以有定义. 于是，我们可利用这个方式来定义广义函数之间的卷积.

现在我们要说明定义合理性，即确实定义了 φ ∈ D  的一个连续线性泛函.

lim
ε→0
⟨f ∗ φε,ψ⟩ = lim

ε→0
⟨f, φ̌ε ∗ ψ⟩ = ⟨f,ψ⟩

从而我们知道有 f ∗ φε → f.

⟨(f ∗ g),φ⟩ = ((f ∗ g) ∗ φ̌)(0)

= (f ∗ (g ∗ φ̌))(0)

= ⟨f, (g ∗ φ̌)∨⟩

= ⟨f(⋅), (∫ g(y)φ(y − ⋅)dy)∨⟩

= ⟨f(⋅),∫ g(y)φ(y + ⋅)dy⟩

= ⟨f(⋅), ⟨g(y),φ(y + ⋅)⟩⟩.

✏️笔记：

我们梳理一下这个技术，就是考虑 (f ∗ φ)(0) = ⟨f,φ(−x)⟩x = ⟨f, φ̌⟩，那如果把 0 换成别的呢？我们有

(f ∗ φ)(−x) = ⟨f,φ(−x − y)⟩y = ⟨f, φ̌(x + y)⟩y

我们把这个式子反过来使用，就是

⟨f,φ(x + y)⟩y = (f ∗ φ̌)(−x)

设 f ∈ D
′，g ∈ E

′，则我们可以定义

⟨f ∗ g,φ⟩ = ⟨f, ⟨g,φ(x + y)⟩y⟩x

(定义)  D ′ 与 E ′ 的卷积
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由于

ψ(x) = ⟨g(y),φ(x + y)⟩ = (g ∗ φ̌)(−x)

由前面定理知

supp (g ∗ φ̌) ⊂ supp g + supp φ̌

右边两个都是紧的，所以相加还是紧的，即 (g ∗ φ̌)(−x) ∈ C∞
0 (R

n)，因此定义的右端有意义，并且显然
⟨f ∗ g,φ⟩ 关于 φ ∈ C∞

0 (R
n) 是线性的，若 φj → 0（于 D(R

n) 中），即 suppφj ⊂ K（紧集），且 φj 在 K 上一
致地收敛于 0，记 ψj(x) = (g ∗ φ̌j)(−x)，则由定理

suppψj ⊂ K + supp g,

故 ψj ∈ C∞
0 (R

n). 很容易证明对一切重指标 α，有 ∂αψj(x) 关于 x 一致收敛于 0. 即

ψj(x) = ⟨g(y),φj(x + y)⟩→ 0 (于 D(R
n) 中)

因此 ⟨f(x),ψj(x)⟩→ 0，即有

⟨f ∗ g,φj⟩ = ⟨f(x), ⟨g(y),φj(x + y)⟩⟩→ 0.

这就证明了 f ∗ g 是 D(R
n) 上的连续线性泛函，即 f ∗ g ∈ D

′(R
n).

类似地，当 f ∈ E
′(R

n), g ∈ D
′(R

n) 时，用上面的定义仍可以定义 f ∗ g ∈ D
′(R

n).

总之要注意，f 与 g 中至少有一个有紧支集. 对两个一般的 f, g ∈ D
′(R

n) 不能一般地定义其卷积.

证明：

（1） 设 f ∈ D
′，g,h ∈ E

′，则对于任意的 φ ∈ D，我们有

对应的，有

于是我们知道 (f ∗ g) ∗ h = f ∗ (g ∗ h).

⟨f ∗ (g ∗ h),φ⟩ = ⟨f, ⟨(g ∗ h)(y),φ(x + y)⟩⟩

= ⟨f, ⟨g(y), ⟨h(z),φ(x + y + z)⟩⟩⟩

⟨(f ∗ g) ∗ h,φ⟩ = ⟨f ∗ g, ⟨h(z),φ(x + z)⟩⟩

= ⟨f(x), ⟨g(y), ⟨h(z),φ(x + y + z)⟩⟩⟩

广义函数卷积的性质，卷积代数：设 f, g,h ∈ D
′(Rn)，且其中至少有两个具有紧支集，则

（1）(f ∗ g) ∗ h = f ∗ (g ∗ h)

（2）f ∗ g = g ∗ f

（3）supp (f ∗ g) ⊂ supp f + supp g

（4）f ∗ δ = δ ∗ f = f

（5）∂α(f ∗ g) = (∂α1f) ∗ (∂α2g), ∀α = α1 + α2

（6）卷积运算关于每个因子都是线性的.

(性质)  卷积代数



1.4 傅里叶变换

我们回忆一下一般而言的 Fourier 变换是什么，给定 f(x) ∈ L(Rn)，f 的Fourier 变换为

f̂(ξ) = ∫
Rn

e−ix⋅ξf(x)dx

（3）设 f ∈ D
′，g ∈ E

′，对于任意的 φ 满足 supp φ ⊂ (supp f + supp g)c，于是我们有

⟨f ∗ g,φ⟩ = ⟨f(x), ⟨g(y),φ(x + y)⟩⟩

令 ψ(x) = ⟨g(y),φ(x + y)⟩，我们要证明 ⟨f,ψ⟩ = 0，我们需要判断 ψ(x) 在哪里不为 0。

ψ(x) ≠ 0 ⟹ supp g ∩ supp(φ(x + ⋅)) ≠ ∅

而函数 y ↦ φ(x + y) 的支集是 {y ∣ x + y ∈ supp φ} = supp φ − x，所以若 ψ(x) ≠ 0，则必须有：

x ∈ supp φ − supp g

即 supp ψ ⊂ supp φ − Sg。因此

所以 ⟨f,ψ⟩ = 0，得证.

supp ψ ∩ supp f = ∅

⟸ (supp φ − supp g) ∩ supp f = ∅

⟺ supp φ ∩ (supp f + supp g) = ∅

❗警告：

(3) 的证明是错误的，因为关键的一步是

supp ψ ⊂ supp φ − supp g

但是我们实际上只是说明了

{x:ψ(x) ≠ 0} ⊂ supp φ − supp g

而取完闭包才是支集，所以实际上得不到这个式子，但是书上都这么写了我们就顺从他吧，没有必要花
费大力气给自己找不自在.

如果你真的想知道怎么修正，只需要引入一条引理：如果 A 是闭集，B 是紧集，则 A + B 是闭集，如果
A,B 都是紧集，则 A + B（以及 A − B）是紧集.

我们有的是

{x:ψ(x) ≠ 0} ⊂ supp φ − supp g

令 K = supp φ − supp g。 因为 supp φ 和 supp g 都是紧集，根据引理，K 也是紧集，因此 K 是闭集。 既
然 {x ∣ ψ(x) ≠ 0} ⊆ K，且 K 是闭集，那么该集合的闭包（即 ψ 的支集）也必然包含在 K 中：

supp ψ = {x ∣ ψ(x) ≠ 0} ⊆ K = K

即：

supp ψ ⊆ supp φ − supp g

––
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1 .4 .1 速降函数空间 S

从定义我们可以看出来，对于任意的多项式 Q(x) 与常系数偏微分算子 P(D)，我们有

Q(x)P(D)S ⊂ S , P(D)Q(x)S ⊂ S

由于 φ(x) 在 ∞ 处速降，所以上面的积分是收敛的，我们来证明一下：

⚠️注意：

书上和课程上把速降函数称为急减函数，这个名字太难听了我不喜欢，所以这里都用我更喜欢的速降函
数.

证明：

由定义，我们知道存在 C > 0，使得 sup |xαφ(x)| ≤ C，也就是说 |φ(x)| ≤
C

|xα|
，我们取充分大的 α

使得 C

|xα|
 在 Rn − B(0, 1) 上是可积的，于是我们知道

速降空间，又叫 Schwartz 空间，记为 S，而所有满足以下条件的函数 f(x) 的空间：对于任意的重指
标 α,β ∈ Nn，存在常数 c(α,β) ≥ 0 使得

sup
Rn

|xα∂βf(x)| ≤ c(α,β)

fj(x) 在 S  中趋于 0，是指对于固定的 α,β，有

sup
Rn

|xα∂βfj(x)| → 0

对于 φ(x) ∈ S，定义其 Fourier 变换为

φ̂(ξ) = ∫ e−ix⋅ξφ(x)dx

S ⊂ L
1.

(定义)  速降函数空间

(定义)  速降函数的傅里叶变换

(引理)  速降函数 L eb esgu e 可积
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实际上这个玩意还能加强，即

证明与之前广义函数情况一样，从略.

我们定义 Dxj
=

1

√−1
∂xj

=
1

i
∂xj

=
1

i
∂xj

= −i∂xj

∫ |φ|dx = ∫
B(0,1)

|φ|dx + ∫
Rn−B(0,1)

|φ|dx ≤ C1 + ∫
Rn−B(0,1)

C

|xα|
dx < ∞

证明：

证明和 p = 1 的情况是完全一样的.

证明：

由于 φ(x) 速降，我们可以在积分号下求微商，也可以作分部积分而且积分号外之项为 0，所以

又因为 xje
−ix⋅ξ = −Dξje

−ix⋅ξ，所以

∫ e−ix⋅ξDαφ(x)dx = ∫ [(−Dx)αe−ix⋅ξ]φ(x)dx

= ∫ [(−
1

i

∂

∂x
)

α

e−ix⋅ξ]φ(x)dx

= ξαφ̂(ξ).

S ⊂ L
p(∞ > p ≥ 1)

速降函数的卷积的偏导可以乱放，即如果 f, g ∈ S，则有

∂α(f ∗ g) = (∂αf) ∗ g = f ∗ (∂αg)

φ ∈ S，记其 Fourier 变换为 F :φ ↦ φ̂，φ̂ ∈ S，而且

F(Dαφ)(ξ) = ξαφ̂(ξ), F(xαφ)(ξ) = (−Dξ)
αφ̂(ξ)

(定理)  Th m

(定理)  速降函数卷积的偏导

(定理)  傅里叶变换下的互换公式



∫ e−ix⋅ξxαφ(x)dx = ∫ (−Dξ)
αe−ix⋅ξφ(x)dx = (−Dξ)

αφ̂(ξ).

最后，

所以 F  映 S  中之元到 S  中，而且由 S  中趋于 0 的定义，F : S → S  是连续的，这一点留作习题。

|ξαDβ
ξ
φ̂(ξ)| = ∫ e−ix⋅ξDα

x [(−x)βφ(x)]dx

⩽ ∫ (1 + |x|2)−(n+1)/2(1 + |x|2)(n+1)/2Dα
x [(−x)βφ(x)] dx

⩽ C sup
Rn

(1 + |x|2)(n+1)/2Dα
x [(−x)βφ(x)] < ∞.∣ ∣∣ ∣∣ ∣证明：

因为

−ix ⋅ ξ − |x|2/2 = −
1

2
(

n

∑
j=1

x2
j + 2

n

∑
j=1

xj(iξj) +
n

∑
j=1

(iξj)
2)−

1

2
|ξ|2,

所以

∫ e−ix⋅ξe−|x|2/2dx = e−|ξ|2/2
n

∏
j=1

∫
∞

−∞
e−(xj+iξj)2/2dxj.

对积分 ∫
∞

−∞
e−(xj+iξj)2/2dxj, 应用柯西定理来改变积分路径如图

即有

∫
∞

−∞
e−(xj+iξj)2/2dxj = ∫

∞

−∞
e−x2

j/2dxj = √2π.

得证.

我们有 ∫ e−ix⋅ξe−|x|2/2dx = (2π)
n
2 e−|ξ|2/2

(引理)  很好的傅里叶变换(好在哪？)



下面总结傅里叶变换的性质，证明做略.

⚠️注意：

锐评：说好的 e−|x|2/2 的傅里叶变换是自身呢？

我们称 g(x) = e−|x|2/2 为 Gauss 函数，这个函数的特点是其傅里叶变换就是自身(差一个常数因子).

🕹️ 例子： Gauss 函数

证明：

取上述高斯函数 g(ξ) = e−|ξ|2/2 有

用 g(εξ)(ε > 0) 代替 g(ξ)，则 ĝ(y) 应改为 ε−nĝ( y

ε
) ，令 y = εy1 代入上式有

∫ φ̂(ξ)g(εξ)eix⋅ξdξ = ∫ ĝ(y1)φ(x + εy1)dy1.

令 ε → 0，即得

g(0)∫ φ̂(ξ)eix⋅ξdξ = φ(x)∫ ĝ(y1)dy1 = (2π)nφ(x).

这是因为前面引理告诉我们 ĝ(y1) = (2π)
n
2 e−|y1|2/2，又 ∫ e−|y1|2/2dy1 = (2π)n/2，所以

∫ ĝ(y1)dy1 = (2π)n. 因为 g(0) = 1，于是定理得证.

∫ φ̂(ξ)g(ξ)eix⋅ξdξ = ∫ g(ξ)eix⋅ξdξ∫ φ(y)e−iy⋅ξdy

= ∬ eiξ⋅(x−y)g(ξ)φ(y)dydξ

= ∫ φ(y)dy∫ g(ξ)e−i(y−x)⋅ξdξ

= ∫ φ(y)ĝ(y − x)dy

= ∫ ĝ(y)φ(x + y)dy.

F :S → S  有连续的逆映射 F −1: φ̂ ↦ φ，由下式给出

φ(x) = (2π)−n ∫ eix⋅ξφ̂(ξ)dξ

(定理)  傅里叶逆变换公式



1. 傅里叶变换与反射：

F : φ̌ ↦ F(φ̌)(ξ) = ∫ e−ix⋅ξφ(−x)dx = (2π)nF −1(φ)

2. 傅里叶变换与平移：

F : τhφ ↦ F(τhφ)(ξ) = ∫ e−ix⋅ξφ(x − h)dx = e−ih⋅ξF(φ)(ξ)

3. 傅里叶变换与相似变换：

F : φ(cx) ↦ F(φ(c⋅))(ξ) = ∫ e−ix⋅ξφ(cx)dx = |c|−nF(φ)(
ξ

c
).

其中 F(φ(c⋅))(ξ) 表示先将 φ 之自变量乘以 c 再作傅里叶变换，即

F(φ(c⋅))(ξ) = ∫ e−ix⋅ξφ(cx)dx.

4. 傅里叶变换与非奇异线性变换：设 A : R
n → R

n 是非奇异线性变换，则由 y = Ax 及 x = A−1y 有

若线性变换 B 的表示矩阵为 (bij)，则

F : φ(Ax) ↦ F(φ(A⋅))(ξ) = ∫ e−ix⋅ξφ(Ax)dx

= ∫ e−i(A−1y)⋅ξφ(y)dx (y = Ax)

= | detA|−1 ∫ e−i⟨y,tA−1ξ⟩φ(y)dy

= F(φ)(tA−1ξ) ⋅ | detA|−1.

(By) ⋅ ξ ≜ ⟨By, ξ⟩ =
n

∑
i,j=1

bijyiξj

=
n

∑
i=1

(
n

∑
j=1

bijξj)yi = ⟨y, tBξ⟩.

5. 傅里叶变换与微分运算：傅里叶变换把微分运算变为乘运算，它也把乘法运算变为微分运算，即对 f ∈ S

及任意重指标 α 有

F(Dαf)(ξ) = ξαf̂(ξ),

F(xαf(x))(ξ) = (−Dξ)
αf̂(ξ).

证明：

(f ∗ g)∧(ξ) 其实是一个逐次积分

若 f, g ∈ S，则 f ∗ g ∈ S，并且

f̂ ∗ g = f̂ ⋅ ĝ

(定理)  卷积的傅里叶等于傅里叶的乘积



∫ e−ix⋅ξdx∫ f(y)g(x − y)dy.

因为 f, g 都速降，所以另一个逐次积分 ∫ f(y)dy∫ g(x − y)e−ix⋅ξdx 是存在的. 因此，由数学分析中的

定理，这两个逐次积分相等：

因为两个 S  函数之积仍为 S  函数，所以 (f ∗ g)∧ ∈ S . 又因为傅里叶变换是由 S  到 S  的线性同构，
所以 (f ∗ g) ∈ S . 定理得证.

(f ∗ g)∧(ξ) = ∫ f(y)dy∫ g(x − y)e−ix⋅ξdx

= ∫ f(y)dy∫ g(x − y)e−i(x−y)⋅ξe−iy⋅ξdx

= ∫ e−iy⋅ξf(y)dy∫ g(t)e−it⋅ξdt (t = x − y)

= f̂(ξ) ⋅ ĝ(ξ).

证明：

由于 f ⋅ g ∈ S，所以 f, g ∈ S，于是我们有

f̂ ⋅ g(ξ) = ∫ e−ix⋅ξf(x)g(x)dx

= ∫ e−ix⋅ξf(x)F −1(ĝ)(x)dx

= ∫ e−ix⋅ξf(x)dx(2π)−n ∫ eix⋅ηĝ(η)dη

= (2π)−n ∫ ĝ(η)dη∫ e−ix⋅(ξ−η)f(x)dx

= (2π)−n ∫ ĝ(η)f̂(ξ − η)dη

= (2π)−n(f̂ ∗ ĝ)(ξ)

我们有 ̂f ⋅ g(ξ) = (2π)−n(f̂ ∗ ĝ)(ξ)

如果 f, g ∈ S，则有

⟨f̂, g⟩ = ⟨f, ĝ⟩

如果令 (f, g) = ∫ f–gdx，则有

(推论)  乘积的傅里叶等于傅里叶的卷积

(定理)  Parseval  等式



1 .4 .2 缓增广义函数及其傅里叶变换

这里 u ∈ S
′ 的连续性可以理解为：若 φj → 0（于 S  中），则 u(φj) → 0. 它的必要充分条件是：存在非负整数

k,m 以及常数 ck,m ⩾ 0 使对一切 φ ∈ S  有

|u(φ)| ⩽ ck,m ∑
|α|⩽k,|β|⩽m

sup
Rn

|xα∂β
xφ|

我们实际上有包含关系，首先在集合层面有

D ⊂ S ⊂ E

然而还不止于此. 例如设 φj → 0（于 D  中），则一切 φj 有共同紧支集，在其外一切 φj ≡ 0. 而且对任意 β，∂β
xφj

在 Rn 上一致趋于 0. 再给任意 α，也易见 xα∂β
xφj 在 Rn 上一致趋于 0. 这就是说 φj → 0（于 S  中）. 所以对

φj ∈ D，不但有 φj ∈ S，而且给出了一个连续的嵌入算子 l : lφj = φj，但左方的 φj 认为是 D  中之元，右方的
φj 认为是 S  中之元. 当左方的 φj → 0（于 D  中）时，lφj → 0（于 S  中），所以说嵌入算子 l : D → S  是连续
的. 同样可以证明嵌入算子 l : S → E  也是连续的. 于是把上述包含关系和嵌入算子的连续性综合在一起，我们实
际上有

现在来看广义函数. 显然 E ′ 之一切元都是 S ′ 之元, S ′ 之一切元都是 D ′ 之元. 例如设 u ∈ S
′, φj ∈ D , 则因

D ⊂ S , 所以 φj ∈ S , 而 u(φj) 有意义且是线性泛函. 若 φj → 0 (于 D  中), 则也有 φj → 0 (于 S  中), 从而
u(φj) → 0. 这就是说 u 作为 D  上的线性泛函也是连续的, 所以 u ∈ D

′. 亦即 S ′ ⊂ D
′. 同理 E ′ ⊂ D

′. 此外, 若

证明：

将绝对收敛的二重积分化为逐次积分有

后两个式子即为 ⟨f̂, g⟩ 和 ⟨f, ĝ⟩.

同样

∬ f(ξ)g(x)e−ix⋅ξdxdξ = ∫ g(x)dx∫ e−ix⋅ξf(ξ)dξ

= ∫ f(ξ)dξ∫ g(x)e−ix⋅ξdx.

(2π)−n(f̂, ĝ) = (2π)−n∬ f(x)ĝ(ξ)e−ix⋅ξdxdξ

= ∫ f(x)dx ⋅ (2π)−n ∫ ĝ(ξ)e−ix⋅ξdξ

= ∫ f(x)dx(2π)−n ∫ ĝ(ξ)eix⋅ξdξ = (f, g).

–

–

–

D ↪ S ↪ E

(f, g) = (2π)−n(f̂, ĝ)

S  的连续线性泛函称为缓增广义函数，记为 S ′.

(定义)  缓增广义函数
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uj ∈ S
′ 而且 uj → 0 (于 S ′ 中), 则对任意 φ ∈ S , uj(φ) → 0. 但因 D ⊂ S , 所以对任意 φ ∈ D  也有 uj(φ) → 0, 即

是 uj → 0 (于 D ′ 中). 这就是说, 嵌入映射 l : S ′ ⊂ D
′ 也是连续的. 用这样的方法我们证明了：

于是我们之前关于 D ′ 中元素得到的性质都可以运用在 S ′ . 但是乘子运算是不一样的，前面说过，对于任意的
a(x) ∈ C∞ 都是 D ′ 乘子，所以对于 u ∈ S

′，au 仍然是有意义的，但是一般来说只能保证 au ∈ D
′ 而不能保证

在 S ′ 中. 所以此时我们需要定义 S ′ 乘子.

下面来讨论 S ′ 的傅里叶变换，他是建立在 Parseval 恒等式的基础上的，即对于 f, gj ∈ S，我们有

⟨f̂,φj⟩ = ⟨f, φ̂j⟩

现在如果 f ∈ S
′，则上式左方没有意义，但是右方是有意义的，因为傅里叶变换 F  把速降函数送到速降函数，

并且当在 S  中的意义下φj → 0 时，我们知道 φ̂j → 0，于是自然有 ⟨f̂,φj⟩→ 0，所以 f̂ 是连续线性泛函.

✏️笔记：

我们来证明 F :S ′ → S
′ 是一个连续线性映射：

线性是因为：

我们有嵌入

E
′ ↪ S

′ ↪ D
′

令 a(x) ∈ C∞ 使得对于任意重指标 α，存在 c(α) > 0 和整数 N(α) 使得

|Dαa(x)| ≤ c(α)(1 + |x2|)N(α)

则对任意 φ ∈ S，仍然有 aφ ∈ S，所以用

⟨au,φ⟩ = ⟨u, aφ⟩, ∀φ ∈ S

来定义 au，可以保证 au ∈ S
′，称这种 a 为缓增函数，所有缓增函数的集合记为 OM .

若 f ∈ S
′，则对于 ∀φ ∈ S，我们定义 f 的傅里叶变换为

⟨f̂,φ⟩ := ⟨f, φ̂⟩

(定理)  广义函数的嵌入关系

(定义)  S ′乘子

(定义)  广义函数的傅里叶变换



我们记傅里叶变换为 F :S ′ → S
′，我们可以说明

连续性是因为任意给定 Tk → T  弱*收敛，则我们知道

lim
k→∞
⟨Tk,φ⟩ = ⟨T ,φ⟩, ∀φ ∈ S

于是对于任意的 φ ∈ S，我们有

lim
k→∞
⟨F(Tk),φ⟩ = lim

k→∞
⟨Tk, φ̂⟩ = ⟨T , φ̂⟩ = ⟨F(T ),φ⟩

所以我们有

lim
k→∞

F(Tk) = F(T )

所以连续性得证.

⟨F(aT1 + bT2),φ⟩ = ⟨aT1 + bT2, φ̂⟩ (根据 F  在 S ′ 上的定义)

= a⟨T1, φ̂⟩+ b⟨T2, φ̂⟩ (因为 T1,T2 本身是线性泛函)

= a⟨F(T1),φ⟩+ b⟨F(T2),φ⟩ (再次使用 F  在 S ′ 上的定义)
= ⟨aF(T1) + bF(T2),φ⟩ (根据广义函数的加法和数乘定义)

设 f ∈ L
p(∞ > p > 1)，则对于 ∀φ ∈ S，我们有

|⟨f,φ⟩| = ∫ f(x)φ(x)dx ≤ ∫ |f(x)φ(x)|dx ≤ ||f||Lp ⋅ ||φ||Lq

其中 
1

p
+

1

q
= 1. 我们早在先前就已经说明了 S ⊂ L

q. 所以自然有 f ∈ S
′.

当 p = ∞ 时，则有

当 p = 1 的情况. 利用勒贝格控制收敛定理即可证明 L1 ⊂ S
′.

总之, f ∈ Lp 时, 按

⟨f,φ⟩ = ∫ f(x)φ(x)dx

定义了一个 S ′ 广义函数. 所以 Lp(R
n) 函数都是 S ′ 广义函数.

🕹️ 例子： L
p(1 ≤ p ≤ ∞) 可以嵌入 S ′∣ ∣|⟨f,φ(x)⟩| = ∫ f(x)φ(x)dx ⩽ ess sup|f|∫ |φ(x)|dx

⩽ ess sup|f| sup
Rn

|(1 + |x|2)nφ(x)|∫ dx

(1 + |x|2)n
.∣ ∣S

′ 中广义函数的傅里叶变化是线性同构.

(定理)  S ′ 中广义函数的傅里叶变化是线性同构



证明：

我们只需要证明 F −1 的存在，对于任意的 g ∈ S
′，要证明存在 f ∈ S

′ 使得 ⟨g,φ⟩ = ⟨f, φ̂⟩, ∀φ ∈ S .
由于 F :S → S  是线性同构(我们在前面已经证明了傅里叶逆变换公式)，我们定义

⟨f,φ⟩ = ⟨g, φ̌⟩

于是我们知道

⟨g,φ⟩ = ⟨g, ˇ̂φ⟩ = ⟨f, φ̂⟩

⚠️注意：

实际上构造的过程是：

⟨F −1f,φ⟩ := ⟨f,F −1φ⟩

证明：

首先对于任意的 φ ∈ S，我们有

于是第一个式子成立，对于第二个式子，我们有

⟨D̂α
xf,φ⟩ = ⟨Dα

xf, φ̂⟩

= (−1)|α|⟨f,Dα
xφ̂⟩

= ⟨f, (−Dx)αφ̂⟩

= ⟨f, ˆxαφ(x)⟩

= ⟨f̂,xαφ(x)⟩

= ⟨xαf̂,φ(x)⟩

对于 f ∈ S
′，我们有

D̂α
xf(ξ) = ξαf̂(ξ), x̂αf(ξ) = (−Dξ)

αf̂(ξ)

(性质)  缓增广义函数傅里叶变换的微分



所以我们知道第二个式子成立.

⟨x̂αf,φ⟩ = ⟨xαf, φ̂⟩

= ⟨f,xαφ̂⟩

= ⟨f, D̂α
ξ
φ⟩

= ⟨f̂,Dα
ξφ⟩

= (−1)|α|⟨f̂, (−Dξ)
αφ⟩

= ⟨(−Dξ)
αf̂,φ⟩

⚠️注意：

这两个性质的证明完美地体现了对偶思想。我们在 S ′ 上证明一个性质，通过定义把运算转移到测试函
数上，最终归结为在 S  上证明其“对偶”的性质。

证明“导数变乘法” ̂Df = ξf̂，需要用到“乘法变导数” x̂φ = −Dφ̂。

证明“乘法变导数” x̂f = −Df̂，需要用到“导数变乘法” D̂φ = ξφ̂。

证明：

因 g ∈ E
′，则 g ∗ φε ∈ C∞

0 (R
n)，这里 φε 是磨光核，且 g ∗ φε → g (于 E ′ 中)(当 ε → 0 时). 从而由

E
′ ↪ S

′ 知 g ∗ φε → g (于 S ′ 中)，于是 F(g ∗ φε) → F(g) (于 S ′ 中)，而

F(g ∗ φε)(ξ) = ∫ e−ix⋅ξ(g ∗ φε)(x)dx,

且 supp(g ∗ φε) ⊂ suppg + suppφε ⊂ suppg + B1 (取 ε < 1). 则有

当 ξ 在任意一紧集 K 上时，知 ∫ φε(x − y)e−ix⋅ξdx → e−iy⋅ξ 于 D(R
n
y ) 中 (关于 ξ 一致地)，这便得到，

当 ε → 0 时

F(g ∗ φε)(ξ) → ⟨g(y), e−iy⋅ξ⟩y

关于 ξ ∈ K 一致地成立. 于是

F(g)(ξ) = ⟨g(y), e−iy⋅ξ⟩y.

所以知 ĝ(ξ) ∈ C∞(R
n)，并且，对任一重指标 α，有

F(g ∗ φε)(ξ) = ∫ ⟨g(y),φε(x − y)⟩e−ix⋅ξdx

= ⟨g(y),∫ φε(x − y)e−ix⋅ξdx⟩.

若 g ∈ E
′ ⊂ S

′，则 ĝ(ξ) = ⟨g, e−ix⋅ξ⟩x ∈ OM .

(定理)  物理学家们的歪打正着



Dαĝ(ξ) = ⟨g(y), (−y)αe−iy⋅ξ⟩y.

由 g ∈ E
′ 可得：存在常数 c，整数 m ⩾ 0 以及紧集 K，有

所以它是一个缓增函数.

|Dαĝ(ξ)| ⩽ c ∑
|β|⩽m

sup
y∈K

|∂β
y ((−y)αe−iy⋅ξ)|

⩽ c ∑
|β|⩽m

sup
y∈K

∑
β1+β2=β

c′|(−y)α−β1(−ξ)β2e−iy⋅ξ|

⩽ c(K,m,α) ∑
|β|⩽m

(1 + |ξ|)|β| ⩽ c(g,α)(1 + |ξ|)m.

例 1. δ ∈ E
′, 因此由上面的定理

δ̂(ξ) = ⟨δ(x), e−ix⋅ξ⟩ = 1.

也因此, F −1(1) = δ(x), 这就是许多物理书中的公式

(2π)−n ∫ eix⋅ξdξ = δ(x)

的含义.

例 2. 1 ∈ S
′, 这是显然的, 所以由定义

因此

1̂ = (2π)nδ(x).

例 3. δ(x, t) 的关于 x 的部分傅里叶变换是

⟨δ(x, t), e−ix⋅ξ⟩x = δ(t).

事实上, δ(x, t) 可正则化: δ(x, t) ∗ φε ∈ C∞(R
n+1), 其中 δ(x, t) ∗ φε → δ(x, t) 于 D ′(R

n+1) 中, 再关于 x
作部分傅里叶变换 ⟨δ(x, t) ∗ φε, e

−ix⋅ξ⟩ ∈ C∞(R
n+1
ξ,t ), 对任意 φ(t) ∈ C∞

0 (R), 有

而

⟨⟨δ(x, t) ∗ φε, e
−ix⋅ξ⟩,φ(t)⟩→ ⟨⟨δ(x, t), e−ix⋅ξ⟩,φ(t)⟩,

即有

🕹️ 例子： 常见傅里叶变换

⟨1̂,φ⟩ = ⟨1, φ̂⟩ = ∫ φ̂(ξ)dξ = (2π)n(2π)−n ∫ ei0⋅ξφ̂(ξ)dξ

= (2π)nφ(0) = (2π)n⟨δ,φ⟩, φ ∈ S .

  ⟨⟨δ(x, t) ∗ φε, e
−ix⋅ξ⟩,φ(t)⟩

=  ⟨δ(x, t) ∗ φε, e
−ix⋅ξφ(t)⟩

→  ⟨δ(x, t), e−ix⋅ξφ(t)⟩
=  φ(0)

=  ⟨δ(t),φ(t)⟩ (当 ε → 0),



Chapter 1x 在进入解方程之前，需要知道的

1x .1 ODE回顾

回顾一下会用到的 ODE 类型：

⟨δ(x, t), e−ix⋅ξ⟩x = δ(t).

考虑方程

∂y

∂x
+ H(x)y = f(x)

则方程的解形如

y = e− ∫ x

0 H(t)dt(∫
x

0
f(t)e∫

t

0 H(s)dsdt + C)

考虑方程

{

则方程的解形如

y = e− ∫ x

0
H(t)dt(∫

x

0

f(t)e∫
t

0
H(s)dsdt + y0)

∂y

∂x
+ H(x)y = f(x)

y(0) = y0

方程

∂ 2y

∂x2
+ ay = 0

则若 a > 0

y = C1 cos(√ax) + C2 sin(√ax)

若 a < 0

y = C1e
√−ax + C2e

−√−ax

(定理)  一阶方程

(定理)  一阶初值问题

(定理)  二阶齐次
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1x .2 初值问题，边值问题与初边值问题

在偏微分方程中，通解往往包含任意函数或任意常数，无法描述具体的物理过程。为了得到一个确定的、具体
的解，我们需要附加一些定解条件。

初值问题、Dirichlet问题（一种边值问题）和初边值问题就是三种最常见的定解问题。简单来说，它们的区别
在于定义域（时间/空间）以及约束条件的不同。

可以理解为初值一般指时间t，边值一般指空间x，初边值就是两个都涉及.

初值问题 (Initial Value Problem, IVP) ，别名柯西问题 (Cauchy Problem)

直观理解：
这是关于时间演化的问题。如果你知道一个系统在“开始时刻”（通常是 t = 0）的状态，初值问题就是求解
该系统随时间推移（t > 0）会如何发展。
通常假设空间是无限大的（或者我们只关心局部，不考虑边界的影响）。

适用方程：
通常用于双曲型方程（如波动方程）或抛物型方程（如热传导方程）。

数学表述：
求未知函数 u(x, t)，满足方程：

L[u] = f (x ∈ Rn, t > 0)

附加初始条件：

u(x, 0) = ϕ(x)

(如果是二阶时间导数的方程，如波动方程，还需要给出初速度 ut(x, 0) = ψ(x))。

若 a = 0

y = C1x + C2

需要注意若 y 不仅仅是关于 x 的函数，则上述公式中的 C1 和 C2 不是纯数值常数，而是关于其他变量

（如 t）的任意函数，以第一中情况为例，需要变成：

y(x, t) = C1(t) cos(√ax) + C2(t) sin(√ax)

考虑方程

∂ 2y

∂x2
+ ay = f(x)

我们设 a ≠ 0 时两个线性无关解为 y1, y2，则由常数变易法知道解形如

c1(x)y1 + c2(x)y2

(定理)  二阶非齐次
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Dirichlet 问题 (Dirichlet Problem)

归类： 第一类边值问题 (Boundary Value Problem, BVP)

初边值问题 (Initial-Boundary Value Problem, IBVP)

问题类型 核心关
注

定义域特征 涉及变
量

物理直觉

初值问题 预测未
来

空间无限 (或无边界)，时间 
t > 0

x, t 信号在无尽的宇宙中传播。

直观理解：
这是关于空间分布的稳态问题。它不涉及时间，只涉及空间区域。在这个问题中，我们关注一个有界区域内
部的情况，并且边界上的函数值是已知的（被固定的）。

适用方程：
通常用于椭圆型方程（如 Laplace 方程或 Poisson 方程），描述平衡状态或稳态。

数学表述：
在区域 Ω 内求函数 u(x)，满足方程：

Δu = f (x ∈ Ω)

附加边界条件（在边界 ∂Ω 上）：

u(x) = g(x) (x ∈ ∂Ω)

即：函数在边界上的值 g(x) 是给定的。
物理例子：

稳态热传导：一块金属板，其边缘被保持在固定的温度（例如一边是0度，一边是100度），求金属板
内部达到热平衡后的温度分布。
静电场：已知空腔导体表面的电势分布，求空腔内部的电势。

对比： 如果给定的不是边界上的“函数值”，而是边界上的“法向导数”（即流出/流入的通量），那就是
Neumann问题(第二类边值问题).

直观理解：
这是初值问题和边值问题的结合。
它描述的是一个系统在有限空间内随时间的演化。因为空间是有限的，所以既要知道“开始时怎么样”（初
值），又要知道“边缘发生了什么”（边值）。

适用方程：
演化方程（波动方程、热传导方程）定义在有界区域上。
数学表述：
求 u(x, t)，定义域为 x ∈ [0,L] (有限区间) 和 t > 0。

1. 方程：ut = kuxx (以热方程为例)
2. 初始条件 (t = 0)：u(x, 0) = ϕ(x) （刚开始内部是什么样）

3. 边界条件 (x = 0,x = L)：例如 u(0, t) = 0,u(L, t) = 0 （两端一直保持什么状态）



问题类型 核心关
注

定义域特征 涉及变
量

物理直觉

Dirichlet问
题

稳态分
布

空间有界，无时间 t x 边缘温度固定后的金属板内部温
度。

初边值问题 受限演
化

空间有界，时间 t > 0 x, t 两头固定的琴弦的振动。

1x .3 基本解

我们可利用基本解研究线性偏微分算子的局部可解性. 考虑方程

P (D)u = f,

其中 f ∈ D
′ (Ω), Ω ⊂ R

n 为开区域. 应用单位分解后,我们可设 f ∈ E
′ (Ω) . 因此, E ∗ f 是可定义的广义函数. 于是,

我们有

证明：

由于

P (D)u = P (D) (E ∗ f) = (P (D)E) ∗ f = δ ∗ f = f

有时写作为

P (Dx)E (x, y) = δ (x − y),

相应的解可写为 u = ∫ E (x, y)f (y)dy .

🕹️ 例子： 基本解的例子

设 P (D) = ∑
|a|≤m

aa∂ a 是一常系数 m 阶线性偏微分算子. 若 E ∈ D
′ (R

n) 满足方程

P (D)E = δ,

则称 E 为算子 P (D) 的基本解.

u = E ∗ f 是方程 P (D)u = f 之广义函数解.

(定义)  基本解

(定理)  利用基本解解方程
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1x .4 Duhamel 原理

Duhamel 原理是偏微分方程理论中处理非齐次线性演化方程的核心方法，它的核心思想可以概括为：**非齐次
问题的解，可以看作是无穷多个齐次问题解的叠加（积分）.

在常微分方程中，如果你要解 y′(t) + ay(t) = f(t)，且 y(0) = 0，利用常数变易法，其解为：

y(t) = ∫
t

0

e−a(t−s)f(s) ds

这里 e−a(t−s) 其实就是对应齐次方程的解算子（把 s 时刻的值演化到 t 时刻）。

Duhamel 原理就是这个思想在 PDE 中的推广：将对时间的积分推广到了无限维的函数空间。

我们考虑一个一般的线性演化方程（一阶时间导数），设 L 是一个关于空间变量 x 的线性微分算子

对于每一个固定的时刻 s (0 ≤ s < t)，我们引入一个辅助函数 v(x, t; s)。这个函数满足对应的齐次方程，但是把
s 时刻的源项 f(⋅, s) 作为它的初始条件：

我们可以计算一些例子：

（1）求 
d

dx
 的基本解，设 E(x) 为其基本解，则有

E(x) = H(x) + C

（2）求 
d

dx
+ a 的基本解，设 E(x) 为其基本解，则有

dE

dx
+ aE(x) = δ(x)

则 ODE 理论告诉我们

E(x) = c(x)e−ax

其中 c(x) 待定，我们代入方程得到：

c′(x)e−ax − ac(x)e−ax + ac(x)e−ax = δ(x)

即

c′(x) = δ(x)eax = δ(x)

于是

c(x) = H(x) + c

即

E(x) = (H(x) + c)e−ax

如果我们进一步希望对基本解进行傅里叶变换(如利用傅里叶变换解方程时)，则要求 E(x) ∈ S
′，即缓

增广义函数，则需要杀死 e−ax 增速爆炸的一段，也就是当 a > 0 时，杀死 x < 0 的一段，也就是 c = 0，
当 a < 0 时，杀死 x > 0 的一段，也就是 c = −1.

{ ⋯ (∗)
∂u

∂t
(x, t) + Lu(x, t) = f(x, t) (x ∈ Ω, t > 0)

u(x, 0) = 0 (零初值)
(1)
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则原非齐次问题 (1) 的解 u(x, t) 由下式给出：

u(x, t) = ∫
t

0
v(x, t; s) ds

对于波动方程这类二阶方程，Duhamel 原理的形式略有不同，因为“脉冲”是作用在速度（时间导数）上的。

非齐次问题：

utt + Lu = f(x, t), u(0) = 0,ut(0) = 0

辅助问题（固定参数 s）：

解的公式：

u(x, t) = ∫
t

0
v(x, t; s) ds

为什么这个积分就是解？我们对一阶形式进行验证，设 u(x, t) = ∫
t

0

v(x, t; s) ds，对 t 求导（注意 t 既在积分上

限，也在被积函数中，需使用莱布尼茨变限积分求导法则）：

∂u

∂t
= v(x, t; t)

上限求导

+ ∫
t

0

∂v

∂t
(x, t; s) ds

代入得：

移项即得 ut + Lu = f。

于是我们可以归纳总结出 Duhamel 原理的一般形式是：
**

u(t) = ∫
t

0
(以 f(s) 为初值的齐次方程在时刻 t 的解) ds

1x .5 二阶线性偏微分方程的分类

为了傅里叶变换的方便，我们采用记号

Dj = −i∂j = −i
∂

∂xj

{ ⋯ (∗∗)
∂v

∂t
(x, t; s) + Lv(x, t; s) = 0 (t > s)

v(x, s; s) = f(x, s) (在 t = s 时的初值)
(2)

⎧
⎨⎩

vtt(x, t; s) + Lv(x, t; s) = 0 (t > s)
v(x, s; s) = 0
vt(x, s; s) = f(x, s) (源项变为初始速度)



1. 根据辅助问题的初值条件 (2)，v(x, t; t) 就是 t = s 时的值，即 f(x, t)。

2. 根据辅助方程 (2)，
∂v

∂t
= −Lv。

∂u

∂t
= f(x, t) + ∫

t

0

(−Lv(x, t; s)) ds

= f(x, t) − L(∫
t

0

v(x, t; s) ds)

= f(x, t) − Lu(x, t)
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考虑算子

P(x,D) =
n

∑
j,k=1

ajk(x)DjDk +
n

∑
j=1

bj(x)Dj + c(x)

我们保证 ajk = akj，于是成为一个对称的形式，对应有一个代数形式

P(x, ξ) =
n

∑
j,k=1

ajk(x)ξjξk +
n

∑
j=1

bj(x)ξj + c(x)

我们记

A(x) = (ajk(x))j,k, B(x) = (b1(x), ⋯ , bn(x)), C(x) = c(x)

则有

P(x, ξ) = ξTA(x)ξ + B(x)ξ + C(x)

二阶线性偏微分算子 P(x,D) 的分类完全取决于其主部，即二阶导数项的系数矩阵 A(x)，低阶项 B(x) 和 C(x)

不影响方程的类型分类，分类的核心在于考察对称矩阵 A(x) 的特征值的符号。 假设在某一点 x，实对称矩阵
A(x) 的 n 个特征值为 λ1(x),λ2(x), … ,λn(x)，我们可以根据这些特征值的正负符号情况，将方程分类如下：

拉普拉斯算子 Δ = ∑D2
j，此时 A = I（单位矩阵），特征值全为 1，为椭圆型.

🕹️ 例子： Laplace 算子

波动方程算子 ∂ 2
t − Δx，此时（视 t 为第 n 个坐标），A = diag(−1, −1, … , −1, 1).

🕹️ 例子： 波动方程算子

如果 A(x) 的所有特征值 非零且符号相同，则称该算子在点 x 处是椭圆型的。即 A(x) 是正定或者负定
的，则称其为椭圆形.

如果 A(x) 的所有特征值 非零，且其中恰好有一个特征值的符号与其他 n − 1 个特征值的符号相反，则
称该算子在点 x 处是双曲型的。

代数刻画： 二次型 ξTA(x)ξ 是不定号的，且其惯性指数（正特征值个数，负特征值个数）为
(1,n − 1) 或 (n − 1, 1)。
几何直观： 方程 ξTA(x)ξ = 0 在 ξ 空间中定义了一个二阶锥面（光锥）。

(定义)  椭圆型方程

(定义)  双曲型方程



类型 矩阵 A(x) 的特征值 λ1, … ,λn 二次型 ξTAξ 的性质 典型例子

椭圆型 全非零，同号 (全是 + 或全是 −) 正定 或 负定 Laplace 方程

双曲型 全非零，一个符号与其他相反 (1个+，其余−；或反之) 不定 (符号差为 1 vs n − 1) 波动方程

抛物型 至少有一个为 0 退化 (半定) 热传导方程

这种分类是逐点进行的。如果系数 ajk(x) 是常数，则方程在全空间类型一致；如果系数依赖于 x，方程可能在
区域的一部分是椭圆型，在另一部分是双曲型（例如混合型方程，如 Tricomi 方程）.

Chapter 2 二阶线性椭圆方程

2.1 Laplace 方程

2 .1 .1 Δ 算子的基本解

考虑

Δ =
n

∑
j=1

∂ 2
xj

设 E(x) 为 Δ 的基本解，即

⚠️注意：

如果正负特征值的个数都大于1，有时称为“超双曲型” (Ultrahyperbolic)，但在常规物理背景下较少见。

热传导方程算子 ∂t − Δx， 注意：这里通常将 t 也视为变量之一。如果是 n 维空间 +1 维时间，总变量
数为 n + 1， 此时对应的 (n + 1) × (n + 1) 矩阵 A 只有 n 个非零特征值（对应空间导数），而对应时间
二阶导数的系数为 0，因此有一个特征值为 0。

🕹️ 例子： 热传导方程算子

如果 A(x) 至少有一个特征值为零(即矩阵 A(x) 是奇异的/退化的)，则称该算子在点 x 处是抛物型的. 通
常在抛物型方程的定义中，我们还要求其余的非零特征值符号相同。

代数刻画： det(A(x)) = 0，

几何直观： 二次型 ξTA(x)ξ 退化。

(定义)  抛物型方程
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ΔE(x) = δ(x)

物理背景看成单位正电荷产生的电场，告诉我们 E(x) 仅与 |x| =
n

∑
i=1

x2
i  有关

我们把 |x| 记为 r，令

ΔE(r) = δ(r)

由于

∂E(r)

∂xj
=

dE(r)

dr
⋅

∂r

∂xj
=

dE(r)

dr

xj

r

于是

∂ 2E(r)

∂x2
j

=
∂

∂xj
(

dE(r)

dr

xj

r
) =

r2 − x2
j

r3

dE(r)

dr
+ (

xj

r
)

2 d2E(r)

dr2

所以：

ΔE(r) =
n

∑
j=1

(
r2 − x2

j

r3

dE(r)

dr
+ (

xj

r
)

2 d2E(r)

dr2
) =

n − 1

r

dE(r)

dr
+

d2E(r)

dr2

所以我们需要解的方程变成：

n − 1

r

dE(r)

dr
+

d2E(r)

dr2
= δ(r)

这是一个ODE问题，我们令

w(r) =
dE(r)

dr

有

dw(r)

dr
+

n − 1

r
w(r) = δ(r)

两边同时乘 rn−1(n ≥ 2)，有

rn−1 dw(r)

dr
+ rn−2(n − 1)w(r) = rn−1δ(r) = 0

也就是

d

dr
(rn−1w(r)) = rn−1 dw(r)

dr
+ rn−2(n − 1)w(r) = 0

所以

rn−1w(r) = c ⟹ w(r) =
c

rn−1

⎷⚠️注意：

这是老师上课的讲法，仅与模长相关(称为径向依赖)的原因是这个算子以及 δ 都是旋转不变的，从而任何
一个方向通过正交矩阵旋转之后的结果都一样，于是仅和模长相关.



所以我们得到

dE(r)

dr
=

c

rn−1

当 n = 2 的时候，我们有

E(r) = c ln r + c′ = c2 ln r + c′

当 n > 2 的时候，我们有

E(r) =
c

2 − n
r2−n + c′ = cnr

2−n + c′

问题在于怎么确定常数. 我们通过下面的引理来确定：

首先当 n ≥ 3 时，对 v = r2−n 使用 Green 恒等式，设 B(Q) 是 Q 的一个半径为 ε 的球邻域，P  是动点，令
|PQ| = r，我们有

∫
Ω−B(Q)

[uΔ( 1

rn−2
)−

1

rn−2
Δu]dV = ∫

∂(Ω−B(Q))

[u ∂

∂→n
( 1

rn−2
)−

1

rn−2

∂u

∂→n
]dS

把第二个式子的边界拆开，有

∫
∂(Ω−B(Q))

[u
∂

∂→n
(

1

rn−2
)−

1

rn−2

∂u

∂→n
]dS = (∫

∂Ω
−∫

∂B(Q)
)[u

∂

∂→n
(

1

rn−2
)−

1

rn−2

∂u

∂→n
]dS

由于我们有

Δcnr
2−n = δ

于是有在 Ω − B(Q) 中有

Δ
1

rn−2
= 0

所以有

∫
Ω−B(Q)

uΔ( 1

rn−2
)dV = 0

另外，我们有

由积分中值定理我们得到

∫
∂B(Q)

[u ∂

∂→n
( 1

rn−2
)−

1

rn−2

∂u

∂→n
]dS = ∫

∂B(Q)

[u ∂

∂→r
( 1

rn−2
)−

1

rn−2

∂u

∂→r
]dS

= −
n − 2

εn−1
∫

∂B(Q)

udS −
n − 2

εn−2
∫

∂B(Q)

∂u

∂r
dS

对于比较好的函数，有

∫
Ω

(uΔv − vΔu)dV = ∫
∂Ω

(u ∂v

∂→n
− v

∂u

∂→n
)dS

(引理)  G reen 第二恒等式



∫
∂B(Q)

udS = u(Q∗)εn−1(n − 2)|Sn−1|, ∫
∂B(Q)

∂u

∂r
dS =

∂u

∂r
(Q′)εn−1(n − 2)|Sn−1|

于是我们知道

lim
ε→0

∫
∂B(Q)

[u ∂

∂→n
( 1

rn−2
)−

1

rn−2

∂u

∂→n
]dS = −(n − 2)|Sn−1|u(Q)

带回原方程，我们有

−∫
Ω

1

rn−2
ΔudV = ∫

∂Ω
[u

∂

∂→n
(

1

rn−2
)−

1

rn−2

∂u

∂→n
]dS + (n − 2)|Sn−1|u(Q)

整理就得到

u(Q) =
1

(n − 2)|Sn−1|
[∫

∂Ω

r2−n ∂u

∂→n
dSP − ∫

∂Ω

u
∂

∂→n
r2−ndSp − ∫

Ω

r2−nΔudVp]

这个公式也被称为位势积分.

当 n = 2 时，我们照葫芦画瓢推导此时的位势积分公式，先使用 Green 第二恒等式，取 v = ln r，设 B(Q) 是 Q
的一个半径为 ε 的球邻域，P  是动点，令 |PQ| = r，我们有

∬
Ω−B(Q)

[uΔ (ln r) − ln rΔu]dS = ∫
∂(Ω−B(Q))

[u ∂

∂→n
(ln r) − ln r

∂u

∂→n
]ds

把第二个式子的边界拆开，有

∫
∂(Ω−B(Q))

[u ∂

∂→n
(ln r) − ln r

∂u

∂→n
]ds = (∫

∂Ω

−∫
∂B(Q)

)[u ∂

∂→n
(ln r) − ln r

∂u

∂→n
]ds

由于我们有

Δ(c2 ln r) = δ

于是有在 Ω − B(Q) 中有

Δ ln r = 0

所以有

∬
Ω−B(Q)

uΔ (ln r)dS = 0

另外，我们有

由积分中值定理我们得到

∫
∂B(Q)

uds = u(Q∗)2πε, ∫
∂B(Q)

∂u

∂r
ds =

∂u

∂r
(Q′)2πε

于是我们知道

lim
ε→0

∫
∂B(Q)

[u ∂

∂→n
(ln r) − ln r

∂u

∂→n
]ds = 2πu(Q)

带回原方程，我们有

∫
∂B(Q)

[u ∂

∂→n
(ln r) − ln r

∂u

∂→n
]ds = ∫

∂B(Q)

[u ∂

∂→r
(ln r) − ln r

∂u

∂→r
]ds

=
1

ε
∫

∂B(Q)

uds + ln ε∫
∂B(Q)

∂u

∂r
ds



−∬
Ω

ln rΔudS = ∫
∂Ω
[u ∂

∂→n
(ln r) − ln r

∂u

∂→n
]ds − 2πu(Q)

整理就得到

u(Q) = −
1

2π
[∫

∂Ω

ln r
∂u

∂→n
dsP − ∫

∂Ω

u
∂

∂→n
ln rdsp − ∬

Ω

ln rΔudSp]

现在对于任意的 φ ∈ C∞
0 (Ω)，r = |PQ|，我们都有

由于 φ|∂Ω ≡ 0，所以我们把上面位势积分中的 u 变成 φ，知道式子前两项都是 0，于是有

cn ∫
Ω
r2−nΔφdVP = φ(Q) = −

1

(n − 2)|Sn−1|
∫

Ω
r2−nΔφdVp

所以我们得到了 (n ≥ 3)

cn = −
1

(n − 2)|Sn−1|

当 n = 2，我们有

于是有

c2 ∬
Ω

ln rΔφdSp =
1

2π
∬

Ω
ln rΔφdSp

φ(Q) = ⟨δ(Q − P),φ(P)⟩P

= ⟨Δ (cnr2−n),φ(P)⟩P

= cn⟨r
2−n, Δφ(P)⟩P

= cn ∫
Ω
r2−nΔφ(P)dVP

φ(Q) = ⟨δ(Q − P),φ(P)⟩P
= ⟨Δ(c2 ln r),φ(P)⟩P
= c2⟨ln r, Δφ(P)⟩P

= c2 ∬
Ω

ln rΔφdSp

u 是 Rn 上的函数(具有一定光滑性)，则成立：

u(Q) =
1

(n − 2)|Sn−1|
[∫

∂Ω
r2−n ∂u

∂→n
dSP − ∫

∂Ω
u

∂

∂→n
r2−ndSp − ∫

Ω
r2−nΔudVp]

记录一下三维情况的位势积分：

u (Q) =
1

4π
[∬

∂Ω

1

r

∂u

∂n
dS − ∬

∂Ω
u

∂

∂n
(

1

r
)dS − ∭

Ω

1

r
Δu dx]

二维情况的：

u(Q) = −
1

2π
[∫

∂Ω
ln r

∂u

∂→n
dsP − ∫

∂Ω
u

∂

∂→n
ln rdsp − ∬

Ω
ln rΔudSp]

(定理)  位势积分公式



所以

c2 =
1

2π

2 .1 .2 调和函数的平均值公式与最大模原理

⚠️注意：

我们常用 Γ(P ,Q) 来表示 Laplace 方程的基本解，其中 P  是动点而 Q 是定点. 此时位势积分也记为

u(Q) = ∫
∂Ω

−Γ(P ,Q)
∂u

∂→n
dSP + ∫

∂Ω
u

∂

∂→n
Γ(P ,Q)dSP + ∫

Ω
Γ(P ,Q)ΔudVp

证明：

由位势积分，我们有

u(Q) =
1

4π
∫
S(R,Q)

[
1

r

∂u

∂→n
+ u

1

r2
]dSP

当 n = 2 时，

E(r) =
1

2π
ln r

当 n ≥ 3 时，

E(r) = −
1

(n − 2)|Sn−1|
r2−n

特别地，当 n = 3 时，有

E(r) = −
1

4π

1

r

n = 3，设 u 是调和函数，令 Ω = B(R,Q)，我们有球面平均值：

u(Q) =
1

4πR2
∫

∂Ω
u(P)dSP

和球体平均值

u(Q) =
1

|B(R,Q)|
∫

Ω

u(P)dVP

(定理)  L aplace  方程的基本解(无常数)

(定理)  平均值公式
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2 .1 .3 Laplace 方程的唯一性和稳定性

我们给出一个 Claim，即如果 Δu = 0 在 Ω 上恒成立，而 ∂Ω 光滑，则有 ∫
∂Ω

∂u

∂→n
dS = 0.

证明只需要对 v = 1 使用 Green 第二恒等式. 所以我们立刻得到

u(Q) =
1

4π
∫
S(R,Q)

[ 1

r

∂u

∂→n
+ u

1

r2
]dSP =

1

4πR2
∫
S(R,Q)

u(P)dSP

于是证明了球面平均值公式，我们此时对 R 积分就得到球体平均值公式，即

|B(R,Q)|u(Q) = ∫
R

0
|S(r,Q)|u(Q)dr = ∫

R

0
∫
S(r,Q)

u(P)dSPdr = ∫
B(R,Q)

u(P)dVP

证明：

和最大模原理的证明几乎一模一样，若内部可以取到最大值，则我们利用平均值公式知道周围都是最
大值，则我们对于任意一条路径都可以找到一个有限覆盖从而证明路径的首尾两端都是相等的. 然后利用
欧式空间是局部道路连通空间，Ω 是连通开集知道 Ω 是道路连通集合，从而我们知道 Ω 中任意两点处的值
一样，从而是常数.

设 Ω ⊂ R3 是一个连通开集，若 u 在 Ω 中调和并且不为常数，则 u 不能在 Ω 内达到上下确界. 立刻可以

得到若调和，则最大模和最小模一定在边界上取到.

方程解的稳定性指的是对于不同给定的参数函数 f,h，任给 ε > 0，则存在 δ > 0，使得若 |f − h| < δ，
则对应的解 |uf − uh| < ε.

DIrichlet 问题

的解是唯一的，并且方程的解具有稳定性.

⎧⎪⎨⎪⎩Δu = 0

u|∂Ω = f

(定理)  极值原理

(定义)  解的稳定性

(定理)  L aplace方程Dirich let问题解的唯一性与稳定性
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2 .1 .4 简单区域中的 Dirichlet 边值问题

我们考虑三种边值问题：

第一种就是Dirichlet边值：

第二种是 Neumann边值问题 (P1)：

还有一种混合边值问题，也称为第三边值问题：

我们聚焦于 Dirichlet 边值问题，为了处理 Dirichlet 边值问题，我们先介绍一个工具：Green 函数.

证明：

设 u1,u2 都是解，令 u = u1 − u2，我们知道 u 是方程

的解，并且 u 是调和函数，所以最大值在边界取到，所以 u = 0，所以解是唯一的. 对于稳定性， 设 g
是一个函数，满足

|h| = |f − g| < ε

则方程

的解记为 ug，之前的解记为 uf，我们有 uf − ug 是方程

的解，由最大值原理知道

|uf − ug| ≤ max |h| ≤ ε

此即解的稳定性.

⎧⎪⎨⎪⎩Δu = 0

u|∂Ω = 0

⎧⎪⎨⎪⎩Δu = 0

u|∂Ω = g

⎧⎪⎨⎪⎩Δu = 0

u|∂Ω = f − g

⎧⎪⎨⎪⎩Δu = 0

u|∂Ω = f

⎧⎪⎨⎪⎩Δu = 0

∂u

∂→n ∂Ω

= f∣⎧⎪⎨⎪⎩Δu = 0

au|∂Ω + b
∂u

∂→n ∂Ω

= f∣
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引入 Green 函数就是为了解方程，他会修正基本解在给定边界上的值，使得在边界上的值为 0.

于是我们知道如何来解方程

只需要取出 Ω 上的 Green 函数 G(P ,Q)，于是现在利用 Green 第二恒等式，有

∫
Ω

uΔG − GΔu dV = ∫
∂Ω

u
∂G

∂→n
− G

∂u

∂→n
dS

容易发现

LHS = ∫
Ω
uδ(P − Q)dV = u(Q), RHS = ∫

∂Ω
u

∂G

∂→n
dS

故

u(Q) = ∫
∂Ω

f
∂G

∂→n
dS

所以我们得到：

⎧⎪⎨⎪⎩Δu = 0

u|∂Ω = f

Ω 是给定区域，Q 是定点，则其上的 Green 函数定义为 G(P ,Q) = v(P) + Γ(P ,Q)，其中 v 是方程

的解. 这样构造的 Green 函数满足

⎧⎪⎨⎪⎩Δv = 0

v|∂Ω = −Γ(P ,Q)

⎧⎪⎨⎪⎩ΔG = δ(P − Q)

G|∂Ω = 0

给定区域 Ω，则方程

的解为

⎧⎪⎨⎪⎩Δu = 0

u|∂Ω = f

(定义)  给定区域上的 G reen 函数

(定理)  L aplace  方程 Dir ich let  边值问题的解



类似地，我们可以有

⚠️注意：

严格来说，因为 G 有奇点，所以需要把奇点周围扣去一个小圆然后再求极限，这里为简略省略了这个步
骤，如果你使用位势积分的方法来做就不需要，因为位势积分已经帮你求过这个极限了，如下(考试你可
能需要按照这个方法来写)：
考虑边值问题：

有

u(Q) = ∫
∂Ω

−Γ(P ,Q)
∂u

∂→n
dSP + ∫

∂Ω
u

∂

∂→n
Γ(P ,Q)dSP + ∫

Ω
Γ(P ,Q)ΔudVp

代入 Dirichlet 边值问题的条件，右边最后一项为 0，于是得到

u(Q) = ∫
∂Ω

−Γ(P ,Q)
∂u

∂→n
dSP + ∫

∂Ω
u

∂

∂→n
Γ(P ,Q)dSP

再注意到

0 = ∫
Ω

(uΔv − vΔu)dVP = ∫
∂Ω
[u

∂v

∂→n
+ Γ(P ,Q)

∂u

∂→n
]dSP

于是我们知道

u(Q) = ∫
∂Ω

u
∂v

∂→n
dSP + ∫

∂Ω

u
∂

∂→n
Γ(P ,Q)dSP = ∫

∂Ω

u
∂

∂→n
(v + Γ(P ,Q))dSP

于是我们就得到了

u(Q) = ∫
∂Ω

f(P)
∂

∂→n
(v + Γ(P ,Q))dSP = ∫

∂Ω

f(P)
∂

∂→n
G(P ,Q)dSP

⎧⎪⎨⎪⎩Δv = 0

v|∂Ω = −Γ(P ,Q)

u(Q) = ∫
∂Ω

f
∂G

∂→n
dS

其中 G 是区域 Ω 上的 Green 函数.

给定区域 Ω，则方程

{

的解为

∫

Δu = f, x ∈ Ω
u|∂Ω = 0

(定理)  Poisson 方程的解



所以很自然也有：

当然你也可以仍然使用

∫
Ω

uΔG − GΔu dV = ∫
∂Ω

u
∂G

∂→n
− G

∂u

∂→n
dS = 0

证明：

道理也是类似的，只需要注意到

∫
Ω

uΔG − GΔu dV = ∫
∂Ω

u
∂G

∂→n
− G

∂u

∂→n
dS = 0

于是

u(Q) = ∫
Ω
uΔGdV = ∫

Ω
GΔudV = ∫

Ω
f(P)G(P ,Q)dVP

证明：

我们利用方程 (P1) 和方程 (P2)

(P1):{ , (P2):{

设其解分别为 u1,u2，我们发现 u1 + u2 就是 (P) 的解，所以我们知道

u(Q) = u1(Q) + u2(Q) = ∫
∂Ω

g(P)
∂G(P ,Q)

∂→n
dSP + ∫

Ω
f(P)G(P ,Q)dVP

其中 G 为 Green 函数.

Δu = 0, x ∈ Ω
u|∂Ω = g

Δu = f, x ∈ Ω
u|∂Ω = 0

u(Q) = ∫
Ω

f(P)G(P ,Q)dVP

其中 G 是 Ω 上的 Green 函数.

我们现在可以求解方程 (P)：

{

解为

u(Q) = u1(Q) + u2(Q) = ∫
∂Ω

g(P)
∂G(P ,Q)

∂→n
dSP + ∫

Ω
f(P)G(P ,Q)dVP

Δu = f, x ∈ Ω
u|∂Ω = g

(定理)  叠加原理



然后还是代入就出来了.

2 .1 .5 Green 函数的性质

证明：

前两条都是显然的.

(3) 设 u(x) = G(x,P) 是源点在 P  的 Green 函数，设 v(x) = G(x,Q) 是源点在 Q 的 Green 函数，根据
定义，我们有：

Δu(x) = δ(x − P), Δv(x) = δ(x − Q)

并且在边界 ∂Ω 上， u = 0, v = 0，由 Green 第二公式

∫
Ω

(uΔv − vΔu) dV = ∫
∂Ω

(u
∂v

∂n
− v

∂u

∂n
) dS

有

LHS = ∫
Ω

(G(x,P)ΔG(x,Q) − G(x,Q)ΔG(x,P)) dx = G(Q,P) − G(P ,Q)

而

RHS = ∫
∂Ω

(G(x,P)
∂G(x,Q)

∂n
− G(x,Q)

∂G(x,P)

∂n
) dS

由于 Green 函数在边界上为 0，即 G(x,P)|x∈∂Ω = 0 且 G(x,Q)|x∈∂Ω = 0，所以整个右边 RHS = 0.

LHS = RHS ⟹ G(Q,P) − G(P ,Q) = 0

(注：严格数学上需要像上一个问题那样挖掉两个小球 Bϵ(P) 和 Bϵ(Q) 取极限，但物理上利用 δ 函数推导
是标准过程。)

（4）我们有 Γ(P ,Q) = −
1

4πr
，Green 函数分解为：G = Γ + v，其中 v 是修正产生的调和函数，由于

v 是调和函数，所以由极值原理我们知道

inf
∂Ω

1

4πr
≤ v(P) ≤ sup

∂Ω

1

4πr

所以我们有

Green 函数性质:

（1）G(P ,Q)|∂Ω = 0.

（2）ΔG(P ,Q) = Δ(Γ(P ,Q) + v) = ΔΓ(P ,Q) + 0 = δ(P − Q).

（3）交换性：G(P ,Q) = G(Q,P).

（4）当 n = 3 时，有

0 < −G(P ,Q) <
1

r(P ,Q)
, ∫

∂Ω

∂

∂→n
G(P ,Q)dSP = 1

(命题)  Prop
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2 .1 .6 调和函数更多性质

−G(P ,Q) =
1

4πr
− v ≥

1

4πr
− sup

∂Ω

1

4πr
→ +∞(P → Q)

于是存在 ε > 0 与 Q 的邻域 BQ(δ) 使得任意的 P ∈ BQ(δ)，都有

−G(P ,Q) > +ε

于是我们考虑区域 Ω′ = Ω − BQ(δ) 上的极值原理，有

由极值原理知道

−G(P ,Q) > 0, ∀P ∈ Ω − {Q}

另外一方面，我们知道

−G(P ,Q) = −Γ(P ,Q) − v =
1

4πr
− v ≤

1

4πr
− inf

∂Ω

1

4πr
≤

1

4πr

现在证明 ∫
∂Ω

∂

∂→n
G(P ,Q)dSP = 1. 我们对 u = 1, v = G(P ,Q) 来使用 Green 第二恒等式，有

∫
Ω

(ΔG − GΔ(1))dV = ∫
∂Ω

( ∂G

∂→n
− G

∂

∂→n
(1))dS

很显然有

LHS = ∫
Ω

ΔGdV = ∫
Ω

δ(P − Q)dVP = 1

而

RHS = ∫
∂Ω

∂G

∂→n
dSP

于是

∫
∂Ω

∂G

∂→n
dSp = 1

⎧⎪⎨⎪⎩Δ(−G(P ,Q)) = δ(P − Q) = 0, ∀P ∈ Ω′

−G(P ,Q)|∂Ω = 0
−G(P ,Q)|∂BQ(δ) > 0

⚠️注意：

关于第四问最后一个式子，我们可以观察到它实际上是方程

的解，由解的唯一性我们只需要验证 u = 1 确实就是解，这是显然的.

⎧⎪⎨⎪⎩Δu = 0

u|∂Ω = 1
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本质上是齐性不能超过基本解，所以我们给出一般情况的可去奇点定理.

证明：

我们构造一个在边界上和 u 相同的调和函数，然后利用极值原理说明确实就是 u : 取小球 B ⊆ Ω ,令

{

v 在 B 上调和,满足平均值公式，即

u (Q) =
1

|∂B|
∫

∂B

u (P)dxP , v (Q) =
1

|∂B|
∫

∂B

v (P)dxP

则 u − v 在 B 上满足平均值公式,而考虑到平均值公式 ⇒ 极值原理，由于 u − v|∂B = 0 ,则 u ≡ v,x ∈ B̄ ,则 u
在 B 中调和,由于 B ⊆ Ω 的任意性, Δu = 0,x ∈ Ω.

Δv = 0,x ∈ B

v|∂B = u|∂B

u(Q) ∈ C(Ω) 满足平均值公式 ⟺  调和.

当 n = 2 时,若 u (Q) 在 A 点 (设为原点) 附近 (但 A 点可能除外)调和,而且

u (Q) = o (1) ln r (A,Q)

则可以补充 u (Q) 在 A 之值使 u 在包括 A 点在内的 A 的某邻域中调和.

当 n = 3 时,若 u (Q) 在 A 点 (设为原点) 附近 (但 A 点可能除外)调和,而且

u (Q) = o (1)
1

r(A,Q)

则可以补充 u (Q) 在 A 之值使 u 在包括 A 点在内的 A 的某邻域中调和.

若 u(P) 在 A 点附近调和(A 点除外)，并且满足

( ) ( ) ( )

(定理)  平均值公式逆定理

(定理)  二维可去奇点定理

(定理)  三维可去奇点定理

(定理)  可去奇点定理



证明：

我们取 A 的一个球形邻域 B(R,A)，有 u 在 B(R,A) − {A} 调和，取 v 为以下方程的解：

{

我们的目的就是证明在整个 B(R,A) 上都有 u = v，令

w = u − v

我们有在边界上 w = u − v = u − u = 0，再由于

lim
P→A

w(P)

Γ(P ,A)
= lim

P→A

u(P) − v(P)

Γ(P ,A)
= lim

P→A

u(P)

Γ(P ,A)
= lim

P→A

o(1)Γ(P ,A)

Γ(P ,A)
= 0

注意到 |Γ(P ,A)| 是调和函数，于是对任意的 ε > 0，会存在 δ > 0，使得当 r(P ,A) ≤ δ 时，有

|w(P)| ≤ ε|Γ(P ,A)|

现在对 B(R,A) − {A} 中任何一点 Q，都有充分小的 δ 使得 r(Q,A) > δ，于是我们注意到

{

于是由极值原理我们知道在 B(R,A) − B(δ,A) 上恒有

w(P) − ε|Γ(P ,A)| ≤ 0

同理有

−w(P) − ε|Γ(P ,A)| ≤ 0

从而

|W(P)| ≤ ε|Γ(P ,A)|

而当 ε 变小，对应的 δ 是不增的，于是我们取 P = Q，有

|W(Q)| ≤ ε|Γ(Q,A)|

对任意充分小的 ε 都成立，所以 W(Q) = 0，即对任意的 Q ∈ B(R,A) − {A}，都有

v(Q) = u(Q)

所以自然可以补充定义

u(A) = v(A)

从而成为一个调和函数.

Δv = 0
v|∂B(R,A) = u|∂B(R,A)

w(P) − ε|Γ(P ,A)| = 0 − ε|Γ(P ,A)| ≤ 0, P ∈ ∂B(R,A)
w(P) − ε|Γ(P ,A)| ≤ 0, P ∈ ∂B(δ,A)

✏️笔记：

u(P) = o(1)Γ(P ,A)

其中 Γ 为 Laplace 算子基本解，则可以补充 u(A) 的值使得 u 在 A 的一个邻域内调和.



如果你足够敏锐，你会发现这里的 Γ 并没有作为基本解起到什么效果，我们实际上需要的只是一个在 A
点有奇性的恒正单奇点调和函数，但是为什么我们选用基本解呢？这是因为基本解 Γ 是本质的：

1. 数学上：它是增长最慢的奇异调和函数，用它能证明出最强的结论。

2. 结构上：Bôcher 定理告诉我们，正调和奇点本质上只有 Γ 这一种形式。

3. 物理上：它定义了“源”的量级。比它弱就意味着没有源，没有源就没有奇点。

证明：

只需要证明任意的 x，都有 u(x) = u(0)，我们直接估计

其中放缩的一步用到了若 y ∈ BR(x)∖BR(0)，则

|y| ≤ |x − y| − |x| ≤ R − |x|

若 y ∈ BR(0)∖BR(x)，则

|y| ≥ |x − y| − |x| ≥ R − |x|

于是得到上面的不等式，令 R → ∞ 就得到

u(x) = u(0)

|u(x) − u(0)| =
1

|BR|
∫
BR(x)

u(P)dVP − ∫
BR(0)

u(P)dVP

=
1

|BR|
∫
BR(x)∖BR(0)

u(P)dVP − ∫
BR(0)∖BR(x)

u(P)dVP

=
1

|BR|
(∫

BR(x)∖BR(0)
|u(P)|dVP + ∫

BR(0)∖BR(x)
|u(P)|dVP)

≤
M

|BR|
(∫

BR(x)∖BR(0)
1dVP + ∫

BR(0)∖BR(x)
1dVP)

≤
M

|BR|
∫
R−|x|≤|P |≤R+|x|

1dVP

≤
MC

Rn
((R + x)n − (R − x)n) → 0∣ ∣∣ ∣全空间上有界调和函数必为常数.

调和函数的一致收敛极限是调和函数.

(定理)  L iouvil le  定理

(定理)  H arnack定理



证明：

若一列调和函数 {un} 在区域 Ω 一致收敛于 u，我们来证明 u 是调和函数，这只需要证明其满足平均
值公式，任取以 Q 为中心的小球 B ⊂ Ω，我们令

fn = un|∂B

有 fn 在 ∂B 上一致收敛到 f = u|∂B，我们知道

于是知道满足平均值公式，从而为调和函数.

u(Q) = lim
n→∞

un(Q)

= lim
n→∞

1

|∂B|
∫

∂B

fn(P)dSp

=
1

|∂B|
∫

∂B
lim
n→∞

fn(P)dSp

=
1

|∂B|
∫

∂B
f(P)dSp

证明：

我们先证明在球上成立，再利用紧集的有限覆盖证明在紧集上成立.

不妨取球心是原点的球 BR，任取 P1,P2 ∈ BR，我们很显然有

u(P1) =
1

|BR|
∫
BR(P1)

u(y)dy, u(P2) =
1

|B3R|
∫
B3R(P2)

u(y)dy

很显然我们有

BR(P1) ⊂ B3R(P2)

利用 u 非负，我们有

∫
BR(P1)

u(y)dy ≤ ∫
B3R(P2)

u(y)dy

于是

|BR|u(P1) ≤ |B3R|u(P2) ⟺ u(P1) ≤ 3nu(P2)

由任意性我们知道

Ω ⊂ Rn 为连通开集，K ⊂ Ω 为连通紧集，则存在只依赖于 K, Ω 的常数 c 使得对任意非负调和函数 u 都

满足：

sup
K

u ≤ c ⋅ inf
K

u

(定理)  H arnack 不等式



Chapter 3 二阶线性抛物方程

3.1 热传导方程

3 .1 .1 热传导方程的基本解

考虑热传导方程

∂u

∂t
− a2Δu = f(x, t), t > 0

其基本解记为 E(x, t)，考虑

∂E(x, t)

∂t
− a2ΔE(x, t) = δ(x, t) = δ(x)δ(t)

在 x 方向做 Fourier 变换

∂

∂t
Ê(ξ, t) + a2|ξ|2Ê(ξ, t) = δ̂(x)δ(t) = δ(t)

变成 ODE 问题，于是得到

Ê(t, ξ) = H(t)e−a2|ξ|2t

于是有

sup
BR

u ≤ 3n inf
K

u

现在来处理紧集的情况，我们取 R =
1

4
d(K, ∂Ω)，这样在 K 中的点为球心取半径 3R 的球就仍然落在

Ω 中，现在对每个 K 中的点这样取球，构成 K 的一个开覆盖，然后取其有限覆盖 B1, ⋯ ,Bk，注意这里
的有限覆盖仅仅与 Ω,K 相关，此时任取 P1,P2 ∈ K，我们知道欧式空间中连通则道路连通，于是可以取
一条道路，然后利用道路上的点进行估计，保证相邻两点落在同一个 Bi 内，最终得到

u(P1) ≤ 3nu(Pi1
) ≤ 3n(3nu(Pi2

)) ≤ ⋯ ≤ 3knu(P2)

取 c = 3kn 即可.

证明：

本质上利用 Poisson 核的解析性，暂且不表.

调和函数是实解析函数.

(定理)  调和函数的实解析性

af://h3-34
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于是我们最终得到基本解为：

E(x, t) = (4πa2t)− n
2 H(t)e−

|x|2

4a2t , t > 0

E(x, t) = F
−1
ξ→x

Ê(t, ξ)

= (2π)−n ∫
Rn

eixξH(t)e−a2|ξ|2tdξ

= (2π)−n(a√2t)−nH(t)∫
Rn

e
ix(a√2tξ)

a√2t e− 1
2

|a√2tξ|2

d(a√2tξ)

= (2π)−n(a√2t)−nH(t)∫
Rn

e
ixy

a√2t e− 1
2

|y|2

dy

= (2π)−n(a√2t)−nH(t)e
− x2

4a2t ∫
Rn

e
− 1

2 |y− ix

a√2t
|2

d(y −
ix

a√2t
)

= (2π)−n(a√2t)−nH(t)e− x2

4a2t ∫
Rn

e− 1
2

|z|2

dz

= (2πa22t)− n
2 H(t)e− x2

4a2t = (4πa2t)− n
2 H(t)e− x2

4a2t

证明：

首先我们有

∫
Rn

E(x, t)dx = ∫
Rn

(4πa2t)− n
2 e−

|x|2

4a2t dx

我们做一个换元，令 y =
x

√4a2t
，那么 x = √4a2t ⋅ y，有

dx = (√4a2t)ndy = (4a2t)
n
2 dy

热传导方程

∂u

∂t
− a2Δu = f(x, t), t > 0

的基本解为

E(x, t) = (4πa2t)− n
2 H(t)e

−
|x|2

4a2t , t > 0

基本解也被称为热核.

对任意的 t > 0，我们都有

∫
Rn

E(x, t)dx = 1

(定理)  热传导方程的基本解

(定理)  热核的归一性



3 .1 .2 热传导方程 Cauchy 问题

考虑初值问题：

{

我们考虑叠加原理，只需要分别解方程

{ , {

我们先解决齐次方程

{

对 u 在 x 方向做 Fourier 变换，将其变成 ODE 的初值问题：

我们可以得到

û(t, ξ) = φ̂(ξ)e−a2|ξ|2t

由于

ˆf1 ∗ f2 = f̂1 ⋅ f̂2 ⟹ f1 ∗ f2 = F
−1(f̂1 ⋅ f̂2)

令 f1 = φ(x), f̂1 = φ̂(ξ)，与 ̂f2(ξ) = e−a2|ξ|2t，于是我们有

f2 = F
−1(e−a2|ξ|2t) = (4πa2t)

−n
2 e−

|x|2

4a2t

t>0
= (4πa2t)

−n
2 H(t)e−

|x|2

4a2t = E(x, t)

故

û(ξ, t) = φ̂(ξ) ⋅ Ê(ξ, t)

所以知道

u(x, t) = F
−1(û) = F

−1 (φ̂(ξ) ⋅ Ê(ξ, t)) = (E(y, t) ∗y φ(y))(x)

从而计算得到形式解

u(x, t) = (4πa2t)
−n
2 H(t)∫

Rn

φ(y)e−
|x−y|2

4a2t dy

代入积分中：

∫
Rn

E(t,x)dx = (4πa2t)− n
2 ∫

Rn

e−|y|2

(4a2t)
n
2 dy

系数项正好消掉：

= π− n

2 ∫
Rn

e−|y|2

dy = 1

∂u

∂t
− a2Δu = f(x, t), t > 0

u|t=0 = φ(x),

∂u

∂t
− a2Δu = 0, t > 0

u|t=0 = φ(x),

∂u

∂t
− a2Δu = f(x, t), t > 0

u|t=0 = 0,

∂u

∂t
− a2Δu = 0, t > 0

u|t=0 = φ(x),

⎧⎪⎨⎪⎩ dû(ξ, t)

dt
+ a2|ξ|2û(ξ, t) = 0

û(t, ξ)|t=0 = φ̂(ξ)

af://h5-37


我们可以验证这个解确实满足初值与微分方程，设

u(x, t) = E(x, t) ∗x φ(x) = ∫
Rn

E(x − y, t)φ(y) dy

则我们有

下面我们要验证：

lim
t→0+

u(x, t) = φ(x)

这等价于证明

lim
t→0+

E(x, t) ∗x φ(x) = φ(x)

(
∂

∂t
− a2Δx)u(x, t) = (

∂

∂t
− a2Δx)∫

Rn

E(x − y, t)φ(y) dy

= ∫
Rn

[( ∂

∂t
− a2Δx)E(x − y, t)]φ(y) dy

= ∫
Rn

δ(x − y)δ(t)φ(y)dy = 0

证明：

由热核的归一性我们知道对于任意 t > 0，函数 E(t,x) 在整个空间 Rn 上的积分恒为 1，下面我们需要
证明，当 t → 0+ 时，除了原点的一个任意小的邻域外，其他地方的积分都趋向于0，任取一个 ϵ > 0，我
们将积分区域分成两部分：一个是以原点为中心、半径为 ϵ 的球 B(0, ϵ)，以及它的补集 Rn ∖ B(0, ϵ)：我们
来考察在球外部分的积分：

∫
|x|≥ϵ

E(x, t)dx = ∫
|x|≥ϵ

(4πa2t)− n
2 e−

|x|2

4a2t dx

再次使用换元 y =
x

√4a2t
，那么积分区域变为 |y| ≥

ϵ

√4a2t
：

= π− n
2 ∫

|y|≥ ϵ

√4a2t

e−|y|2

dy

当 t → 0+ 时，积分下限 
ϵ

√4a2t
→ ∞，这意味着我们是在一个半径趋于无穷大的球外部进行积分，由于

e−|y|2

 是一个可积函数，所以在无穷远处的积分为0，所以：

lim
t→0+

∫
|x|≥ϵ

E(x, t)dx = 0

现在计算 lim
t→0+

∫
Rn

E(x, t)ϕ(x)dx，我们知道

我们有

lim
t→0+

E(x, t) = δ(x) ∈ D
′(Rn)

(定理)  基本解在广义函数意义下收敛到 Dirac 函数



于是我们解决了齐次方程的问题，现在来解决非齐次的问题，考察方程

{

使用 Duhamel 原理就可以利用齐次问题的解来得到非齐次问题的解：构造辅助方程 v(x, t, s)

{

ϕ(0) = ϕ(0) ⋅ 1 = ϕ(0)∫
Rn

E(x, t)dx = ∫
Rn

E(x, t)ϕ(0)dx

因此，我们要考察的极限可以写成：

lim
t→0+

∫
Rn

E(x, t)ϕ(x)dx − ϕ(0) = lim
t→0+

∫
Rn

E(x, t)[ϕ(x) − ϕ(0)]dx

我们想证明这个极限等于0，我们将积分拆分成两部分，以任意小的 ϵ > 0 为界：

∫
Rn

E(x, t)[ϕ(x) − ϕ(0)]dx = ∫
|x|<ϵ

E(x, t)[ϕ(x) − ϕ(0)]dx

I1

+ ∫
|x|≥ϵ

E(x, t)[ϕ(x) − ϕ(0)]dx

I2

因为 ϕ(x) 是一个连续函数，当 |x| < ϵ 时，ϕ(x) 非常接近 ϕ(0)。根据连续性的定义，对于任意 η > 0

，我们总可以找到一个足够小的 ϵ > 0，使得当 |x| < ϵ 时，有 |ϕ(x) − ϕ(0)| < η，因此：

|I1| ≤ ∫
|x|<ϵ

E(x, t)|ϕ(x) − ϕ(0)|dx < η∫
|x|<ϵ

E(x, t)dx

由于 E(x, t) > 0 且总积分为1，我们有 ∫
|x|<ϵ

E(x, t)dx ≤ ∫
Rn

E(x, t)dx = 1，所以 |I1| < η.

由于 ϕ(x) 是紧支集函数，它在某个大球之外恒为0，因此是有界的。设 |ϕ(x)| ≤ M  对所有 x 成立。那
么 |ϕ(x) − ϕ(0)| ≤ |ϕ(x)| + |ϕ(0)| ≤ 2M .

|I2| ≤ ∫
|x|≥ϵ

E(x, t)|ϕ(x) − ϕ(0)|dx ≤ 2M ∫
|x|≥ϵ

E(x, t)dx

根据步骤二的结论，我们知道 lim
t→0+

∫
|x|≥ϵ

E(x, t)dx = 0，因此，对于给定的 ϵ，我们总能找到一个 T > 0，

当 0 < t < T  时，使得 ∫
|x|≥ϵ

E(x, t)dx 足够小，比如小于 
η

2M
，这样 |I2| < η.

综上所述，对于任意给定的 η > 0，我们可以先选择一个足够小的 ϵ 使得 |I1| < η 成立，然后对于这个
ϵ，再选择一个足够小的 t 使得 |I2| < η 成立，所以，当 t → 0+ 时，

∫
Rn

E(x, t)[ϕ(x) − ϕ(0)]dx ≤ |I1| + |I2| < 2η

因为 η 是任意小的正数，这证明了极限为0：

lim
t→0+

∫
Rn

E(x, t)[ϕ(x) − ϕ(0)]dx = 0

即：

lim
t→0+

∫
Rn

E(x, t)ϕ(x)dx = ϕ(0)

 ∣ ∣∂u

∂t
− a2Δu = f(x, t), t > 0

u|t=0 = 0,

∂v

∂t
− a2Δv = 0, t > s > 0

v|t=s = f(x, s)



令

u(x, t) = ∫
t

0

v(x, t, s)ds

容易计算得到

于是得到

∂u

∂t
− a2Δu = f(x, t)

并且

u|t=0 = ∫
0

0

vds = 0

于是现在利用齐次方程的情况我们就可以得到 v 的形状，把 s 当成参数，则 v0(x, t − s) = v(x, t, s) 满足方程

{

于是得到

于是得到

于是我们得到了非齐次问题的解，把这二者综合起来就得到了

{

的解，为齐次问题的解与非齐次问题的解的和.

∂u

∂t
= v(x, t, t) + ∫

t

0

∂v(x, t, s)

∂t
ds

= f(x, t) + a2 ∫
t

0

Δv(x, t, s)ds

= f(x, t) + a2Δ∫
t

0
v(x, t, s)ds

= f(x, t) + a2Δu(x, t)

∂v0

∂t
− a2Δv0 = 0, t > 0

v0|t=0 = f(x, s)

v(x, t, s) = v0(x, t − s)

= (E(y, t − s) ∗y f(y, s))(x)

= (4πa2(t − s))− n
2 H(t − s)∫

Rn

f(y, s)e
−

|x−y|2

4a2(t−s) dy

u(x, t) = ∫
t

0
v(x, t, s)ds

= ∫
t

0

(4πa2(t − s))
−n

2 H(t − s)∫
Rn

f(y)e
−

|x−y|2

4a2(t−s) dyds

= ∫
t

0
∫

Rn

f(y, s)((4πa2(t − s))
−n
2 H(t − s)e

−
|x−y|2

4a2(t−s))dyds

∂u

∂t
− a2Δu = f(x, t), t > 0

u|t=0 = φ(x),



当然我们也可以直接利用基本解的方法来处理. 现在考虑用基本解的方法来解这个方程

(P) : {

我们期望使用基本解的性质，现在有

Pu = f

已知 E 是 P  的基本解，则

u = E ∗ f

为 Pu = f 的 D ′ 解，而 P =
∂

∂t
− a2Δ 的基本解我们已经得到. 但是这存在一个问题，基本解是对于全空间而言

的，而这里的 t 只在半无界有定义，剩下一半的地方没有定义，那怎么办？我们就通过 H(t) 强行延拓到全空间
上. 考虑

f̃(x, t) = {

令

u = E ∗ f

现在令

ũ(x, t) = H(t)u(x, t)

有

( ∂

∂t
− a2Δ)ũ(x, t)

Δ
= F(x, t)

希望 F(x, t) 中包含方程的初值条件 φ(x)，从而得到

∂u

∂t
− a2Δu = f(x, t), t > 0

u|t=0 = φ(x),

0, t ≤ 0
f(x, t), t > 0

方程

{

的解形如

u(x, t) = u1 + u2

其中 u1,u2 分别是齐次与非齐次问题的解，形如：

u1(x, t) = (4πa2t)
−n
2 H(t)∫

Rn

φ(y)e−
|x−y|2

4a2t dy

与

u2(x, t) = ∫
t

0
∫

Rn

f(y, s)((4πa2(t − s))
−n
2 H(t − s)e

−
|x−y|2

4a2(t−s))dyds

∂u

∂t
− a2Δu = f(x, t), t > 0

u|t=0 = φ(x),

(定理)  热传导方程的解



ũ(x, t) = E(x, t) ∗ F(x, t)
t>0
= u(x, t)

证明如下：

对于任意的 ψ ∈ C∞
0 ，我们计算

于是在 D ′ 中，有

δ(t)u(x, t) = φ(x)δ(t)

于是我们有

( ∂

∂t
− a2Δ)ũ(x, t) = φ(x)δ(t) + H(t)f(x, t)

利用基本解的性质，我们得到

回忆

E(x, t) = (4πa2t)− n
2 H(t)e

− |x|2

4a2t

对于积分 I1 而言，我们并不能直接把 δ 对 E 作用，所以要对 δ(t) 磨光，设 Φε(x) 为磨光核，令

δε(t) = δ(t) ∗ Φε(t)

于是有

取极限有

(δ(t)φ(x)) ∗ E(x, t) = ⟨φ(y), ⟨δ(τ),E(x − y, t − τ)⟩⟩ = ⟨φ(y),E(x − y, t)⟩ = (E(y, t) ∗y φ(y))(x)

对于积分 I2 而言：

( ∂

∂t
− a2Δ)ũ(x, t) =

∂

∂t
(H(t)u(x, t)) − a2Δ(H(t)u(x, t))

= δ(t)u(x, t) + H(t)
∂u

∂t
− H(t)a2Δu

= δ(t)u(x, t) + H(t)f(x, t)

⟨δ(t)u(x, t),ψ(t)⟩ = ⟨δ(t),u(x, t)ψ(t)⟩

= u(x, 0)ψ(0)

= φ(x)⟨δ(t),ψ(t)⟩

= ⟨φ(x)δ(t),ψ(t)⟩

ũ(x, t) = E(x, t) ∗ (φ(x)δ(t) + H(t)f(x, t))

= E(x, t) ∗ (δ(t)φ(x)) + E(x, t) ∗ (H(t)f(x, t))

:= I1 + I2

(δε(t)φ(x)) ∗ E(x, t) = ∫
R
∫

Rn

δε(s)φ(y)E(x − y, t − s)dsdy

= ∫ φ(y)dy∫ δε(s)E(x − y, t − s)ds

= ⟨φ(y), ⟨δε(s),E(x − y, t − s)⟩⟩

E(x, t) ∗ (H(t)f(x, t)) = ∫
Rn

∫
R
H(s)f(y, s)E(x − y, t − s)dyds

= ∫
Rn

∫
R
H(s)f(y, s)(4πa2(t − s))− n

2 H(t − s)e
−

|x|2

4a2(t−s) dyds

= ∫
Rn

∫
t

0
f(y, s)(4πa2(t − s))− n

2 e
−

|x|2

4a2(t−s) dyds



容易验证满足方程.

3 .1 .3 热传导方程的初边值问题

考虑初边值问题：

⎧⎪⎨⎪⎩ ∂u

∂t
− a2Δu = f(x, t), x ∈ Ω, t > 0

u|∂Ω = μ(x, t)
u|t=0 = φ(x)

证明：

假设 v(x, t) 在 RT ∖ ΓT  中的某点 (x0, t0) 处取到最大值，有两种可能的位置：

若 (x0, t0) 完全在矩形内部 (α < x0 < β, 0 < t0 < T)，根据多元微积分的极值必要条件：

∂v

∂t
(x0, t0) = 0,

∂v

∂x
(x0, t0) = 0,

∂ 2v

∂x2
(x0, t0) ≤ 0

将这些条件代入算子：

∂v

∂t
− a2 ∂ 2v

∂x2
= 0 − a2(非正数) ≥ 0

这与假设 
∂v

∂t
− a2 ∂ 2v

∂x2
< 0 矛盾. 若 (x0, t0) 在矩形顶部开边上 (α < x0 < β, t0 = T)，在此点，关于 x 的导

数性质依然成立（因为是 x 方向的内部极值）：

∂ 2v

∂x2
(x0,T ) ≤ 0

关于 t 的导数，由于 t0 = T  是区间端点，我们只能保证

∂v

∂t
(x0,T ) ≥ 0

对于区域 Ω × [0,T ] 而言，我们称其抛物边界 Γ 为底边+侧边，即

{(x, t) ∈ Ω × R: t = 0  or  x ∈ ∂Ω}

设 v(x, t) 在 RT  上连续，且在 RT ∖ ΓT（即内部及顶边）满足不等式：

∂v

∂t
− a2 ∂ 2v

∂x2
< 0

则 v(x, t) 不能在 RT ∖ ΓT  中取到最大值。

(定义)  抛物边界

(引理)  严格情况的极值原理
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因为如果导数小于0，则在 T  之前会有更大的值，将这些条件代入算子：

∂v

∂t
− a2 ∂ 2v

∂x2
≥ 0 − a2(非正数) ≥ 0

这同样与假设 ∂v

∂t
− a2 ∂ 2v

∂x2
< 0 矛盾. 于是假设不成立，v 的最大值必须在抛物边界 ΓT  上取得，即：

sup
RT

v = sup
ΓT

v

证明：

我们只需要证明最大值的情况，最小值情况考虑 −u 就得到.

∂u

∂t
− a2 ∂ 2u

∂x2
= 0

由于这里是等号，我们不能直接使用上面的引理，需要构造一个辅助函数 vε(x, t)：

vε(x, t) = u(x, t) + εx2

其中 ε > 0 是一个任意小的常数，计算 vε 的热传导算子：

因为 −2a2ε < 0，所以辅助函数 vε 满足第一步中引理的条件，根据引理，我们有：

sup
RT

vε = sup
ΓT

vε

显然，在整个区域 RT  上，u ≤ u + εx2 = vε，所以：

sup
RT

u ≤ sup
RT

vε

有

sup
RT

vε = sup
ΓT

vε = sup
ΓT

(u + εx2)

∂vε
∂t

− a2 ∂ 2vε

∂x2
=

∂u

∂t
− a2 ∂ 2

∂x2
(u + εx2)

= (
∂u

∂t
− a2 ∂ 2u

∂x2
)− a2(2ε)

= 0 − 2a2ε

= −2a2ε < 0

设 u(x, t) 在矩形 RT = [α,β] × [0,T ] 上连续，并在 RT  的内部满足

∂u

∂t
− a2 ∂ 2u

∂x2
= 0

则在 RT  的抛物边界 ΓT  上取到最大值和最小值，即

sup
RT

u = sup
ΓT

u, inf
RT

u = inf
ΓT

u

(定理)  极值原理(n=1)



在边界 ΓT  上，x 是有界的（|x| ≤ M，其中 M = max(|α|, |β|)），所以：

sup
ΓT

(u + εx2) ≤ sup
ΓT

u + εM 2

综上得到

sup
RT

u ≤ sup
ΓT

u + εM 2

上式对任意的 ε > 0 都成立，令 ε → 0，我们得到：

sup
RT

u ≤ sup
ΓT

u

另一方面，由于 ΓT ⊂ RT，最大值在子集上一定小于等于全集上的最大值，即：

sup
ΓT

u ≤ sup
RT

u

综合以上两式，只能是：

sup
RT

u = sup
ΓT

u

证明：

假设 u1,u2 都是解，令 u = u1 − u2，发现 u 满足

利用极值原理知道 u 在整个 [α,β] × [0,T ] 上都是 0，于是解唯一. 对于稳定性，仍然利用极值原理，若
u1,u2 分别满足方程

,

其中

sup
ΓT

|g1 − g2| ≤ ε

利用极值原理发现 u = u1 − u2 满足

⎧
⎨⎩

∂u

∂t
− a2 ∂ 2u

∂x2
= 0, t > 0

u|ΓT
= 0

⎧
⎨⎩

∂u

∂t
− a2 ∂ 2u

∂x2
= f(x, t), t > 0

u|ΓT
= g1(x, t)

⎧
⎨⎩

∂u

∂t
− a2 ∂ 2u

∂x2
= f(x, t), t > 0

u|ΓT
= g2(x, t)

考虑方程

(P):

方程的解是唯一的，且是稳定的.

⎧⎪⎨⎪⎩ ∂u

∂t
− a2 ∂ 2u

∂x2
= f(x, t), t > 0

u|t=0 = φ(x)
u(α, t) = μ1(t),u(β, t) = μ2(t)

(定理)  初边值问题的唯一性与稳定性



有

−ε ≤ inf
ΓT

(g1 − g2) ≤ u ≤ sup
ΓT

(g1 − g2) ≤ ε

从而满足稳定性.

⎧
⎨⎩

∂u

∂t
− a2 ∂ 2u

∂x2
= 0, t > 0

u|ΓT
= g1 − g2

证明：

设 M0 = sup
y∈R

ϕ(y) 是初始值的上确界，我们要证明对于任意点 (x, t)，都有 u(x, t) ≤ M0.

考虑比较函数：

v(x, t) = M0 +
2M

L2
(x2 + 2a2t)

其中 M  是解 u 的绝对值的上界（|u| ≤ M），L 是某个选定的大数。

容易验证：

vt − a2vxx =
2M

L2
(2a2) − a2 2M

L2
(2) = 0

所以 v 满足热方程，考虑差函数 z(x, t) = v(x, t) − u(x, t)，z 也满足热方程 zt − a2zxx = 0。

我们在矩形区域 DL = [−L,L] × [0,T ] 上应用有界区域的极值原理。z(x, t) 的最小值必须在边界 ∂pDL

上取得。

我们检查边界上的值：

1. 底面 (t = 0)：

z(x, 0) = v(x, 0) − u(x, 0) = M0 +
2M

L2
x2 − ϕ(x)

因为 ϕ(x) ≤ M0 且 2M

L2
x2 ≥ 0，所以：

( )

设 u(x, t) 是柯西问题

的一个有界解(即存在 M  使得 |u(x, t)| ≤ M)，则

u(x, t) ≤ sup
y∈R

ϕ(y)

⎧
⎨⎩

∂u

∂t
− a2 ∂ 2u

∂x2
= 0, x ∈ R, 0 < t ≤ T

u(x, 0) = ϕ(x)

(定理)  上半平面的极值原理



结论：在 DL 的整个抛物边界上，都有 z(x, t) ≥ 0。

根据有界区域的极值原理（最小值原理），在整个矩形内部 DL 中，都有：

z(x, t) ≥ 0 ⟹ u(x, t) ≤ v(x, t)

即：

u(x, t) ≤ M0 +
2M

L2
(x2 + 2a2t)

现在我们在任意固定的点 (x, t) 处观察上述不等式。由于 L 是我们可以任意选取的，我们可以让

L → ∞。当 L → ∞ 时，
2M

L2
(x2 + 2a2t) → 0。

因此，我们得到：

u(x, t) ≤ M0

即

u(x, t) ≤ sup
y∈R

ϕ(y)

z(x, 0) ≥ M0 − M0 = 0

2. 侧面 (x = ±L)：

z(±L, t) = v(±L, t) − u(±L, t) = M0 +
2M

L2
(L2 + 2a2t) − u(±L, t)

= M0 + 2M +
4Ma2t

L2
− u(±L, t)

因为我们已知 |u| ≤ M，所以 −u ≥ −M。

z(±L, t) ≥ M0 + 2M + 0 − M = M0 + M

假设 M0 + M ≥ 0 (这通常成立，因为M是绝对值的界，M ≥ |M0|，所以M + M0 ≥ 0。如果解恒
为负，逻辑稍微调整即可，这里通常假设 M  足够大)。总之，这是非负的。实际上更简单地看：

v(±L, t) ≥
2M

L2
L2 = 2M > M ≥ u(±L, t)，所以 v > u，即 z > 0。

证明：

观察证明，发现唯一性可以由稳定性立刻得到，所以只需要证明稳定性，考虑方程

方程

在有界函数中的解是唯一且稳定的.

⎧
⎨⎩

∂u

∂t
− a2 ∂ 2u

∂x2
= 0, t > 0

u|t=0 = ρ(x)

(定理)  Cau chy 问题解的稳定性



3 .1 .4 一维热传导方程初边值问题的求解

方程为：

(P) :

第一步：化为零边值条件：构造 ũ(x, t) 满足

ũ(0, t) = μ1(t), ũ(l, t) = μ2(t)

直接用直线来拟合：

ũ(x, t) = μ1(t) +
x

l
(μ2(t) − μ1(t))

令 v = u − ũ，我们发现

v(0, t) = v(l, t) = 0

所以我们只需要求解方程

(P0) :

我们把字母换回 u，即解方程：

(P0) :

第二步：利用叠加原理，我们考虑两个方程

,

对任意的 ε > 0，我们来说如明果存在一个充分小的 δ > 0 使得

sup |ρ1(x) − ρ2(x)| ≤ δ

两个方程的有界解 u1,u2 满足

sup |u1 − u2| ≤ ε

任取上半平面上一点 (x0, t0)，我们考虑一个矩形区域

R = {(x, t) ∣ 0 ≤ t ≤ t0, |x − x0| ≤ L}

由于 u = u1 − u2 满足方程

由上半平面极值原理立刻得到.

⎧
⎨⎩

∂u

∂t
− a2 ∂ 2u

∂x2
= 0, t > 0

u(x, t)|t=0 = ρ1(x)

⎧
⎨⎩

∂u

∂t
− a2 ∂ 2u

∂x2
= 0, t > 0

u(x, t)|t=0 = ρ2(x)

⎧
⎨⎩

∂u

∂t
− a2 ∂ 2u

∂x2
= 0, t > 0

u(x, t)|t=0 = ρ1(x) − ρ2(x)

⎧⎪⎨⎪⎩ ∂u

∂t
− a2 ∂ 2u

∂x2
= f(x, t), t > 0,x ∈ (0, l)

u(0, t) = μ1(t),u(l, t) = μ2(t)
u|t=0 = φ(x)

⎧⎪⎨⎪⎩ ∂v

∂t
− a2 ∂ 2v

∂x2
= fv(x, t), t > 0,x ∈ (0, l)

v(0, t) = v(l, t) = 0
v|t=0 = φv(x)

⎧⎪⎨⎪⎩ ∂u

∂t
− a2 ∂ 2u

∂x2
= f(x, t), t > 0,x ∈ (0, l)

u(0, t) = u(l, t) = 0
u|t=0 = φ(x)
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(P1) : , (P2) :

分别取 (P1) 与 (P2) 的解 u1,u2，我们知道 u1 + u2 就是 (P0) 的解.

第三步：解齐次方程 (P1).

(P1) :

我们假设 u(x, t) = X(x)T (t)，代入方程可以得到

X(x)T ′(t) − a2X ′′(x)T (t) = 0

于是知道

X ′′(x)

X(x)
=

T ′(t)

a2T (t)
= −μ

其中 μ 为一个常数，于是知道

{

我们对 μ 与 0 的大小关系进行分类讨论，当 μ < 0 的时候，有

X(x) = C1e
√−μx + C2e

−√−μx

代入边值条件 X(0) = X(l) = 0，发现 C1 = C2 = 0 为平凡解.

当 μ = 0 的时候，我们知道 X 形如

X(x) = C1x + C2

代入边值条件发现还是零解.

当 μ > 0 的时候，我们知道

X(x) = C1 cos(√μx) + C2 sin(√μx)

代入边值条件，解得

C1 = 0, C2 sin(√μl) = 0

如果想要非平凡解，那就是

sin(√μl) = 0

我们考虑

μk = (
kπ

l
)

2

, k = 0, ±1, ±2, ⋯

对 k ≥ 1，取

Xk(x) = Ck sin
kπ

l
x

⎧⎪⎨⎪⎩ ∂u

∂t
− a2 ∂ 2u

∂x2
= 0, t > 0,x ∈ (0, l)

u(0, t) = u(l, t) = 0
u|t=0 = φ(x)

⎧⎪⎨⎪⎩ ∂u

∂t
− a2 ∂ 2u

∂x2
= f(x, t), t > 0,x ∈ (0, l)

u(0, t) = u(l, t) = 0
u|t=0 = 0

⎧⎪⎨⎪⎩ ∂u

∂t
− a2 ∂ 2u

∂x2
= 0, t > 0,x ∈ (0, l)

u(0, t) = u(l, t) = 0
u|t=0 = φ(x)

X ′′(x) + μX(x) = 0
X(0) = X(l) = 0



现在我们说明 {Xk(x)} 是正交系，我们已有：

{ , {

我们进行恒等变换，有

(X ′′
m(x) + μmXm(x))Xn(x) − (X ′′

n(x) + μnXn(x))Xm(x) = 0

得到

(μm − μn)Xm(x)Xn(x) = Xm(x)X ′′
n(x) − X ′′

m(x)Xn(x)

两边同时积分，得到

LHS = (μm − μn)∫
l

0
Xm(x)Xn(x)dx

与

RHS = ∫
l

0
Xm(x)X ′′

n(x)dx − X ′′
m(x)Xndx = XmX

′
n|l0 − X ′

mXn|l0 = 0

由于 μm ≠ μn，于是知道

∫
l

0

Xm(x)Xn(x)dx = 0

即正交.

现在回到 T (t) 的计算，由于

T ′
k(t)

a2Tk(t)
= −μk

我们知道

Tk(t) = Ãke
−a2( kπ

l )
2
t

于是有

uk(x, t) = Xk(x)Tk(t) = Ake
−a2( kπ

l )
2
t sin

kπ

l
x

从而有

u(x, t) =
∞

∑
k=1

Ake
−a2( kπ

l )
2
t sin

kπ

l
x

现在我们需要求出 Ak，使得满足初值条件，由

⚠️注意：

1. 确定常数 μ 的值，使得常微分方程初值问题有非平凡解，此问题称为 Sturm-Liouville 问题.

2. 得到的 μk 的值称为特征值，Xk(x) 称为特征函数.

3. {Xk(x)}k≥1 为特征函数系，是 L2 ([0, l]) 的完全正交系.

X ′′
m(x) + μmXm(x) = 0

Xm(0) = Xm(l) = 0
X ′′

n(x) + μnXn(x) = 0
Xn(0) = Xn(l) = 0



φ(x) =
∞

∑
k=1

Ak sin
kπx

l

我们直接积分立刻得到

Ak =
2

l
∫

l

0
φ(x) sin

kπx

l
dx

于是最终答案为：

u(x, t) =
2

l

∞

∑
k=1

(∫
l

0

φ(x) sin
kπx

l
dx)e−a2( kπ

l
)2
t sin

kπ

l
x

容易发现 |Ak| 一致有界，e−ct 关于 t 速降，从而可以得到上式的收敛性.

第四步： 求解非齐次方程 (P2):

(P2) :

第一个方法是使用 Duhamel 原理：我们考虑 v(x, t, s) 是方程

我们说明

u(x, t) = ∫
t

0

v(x, t, s)ds

为非齐次方程的解：我们首先计算

并且

u(0, t) = ∫
t

0
v(0, t, s)ds = 0 = ∫

t

0
v(l, t, s)ds = u(l, t)

最后有

u(x, 0) = ∫
0

0

v(x, t, s)ds = 0

所以就得到 u 确实是方程的解，现在我们利用齐次的边值问题来解 v，由前面结论我们知道

v(x, t − s) =
2

l

∞

∑
k=1

(∫
l

0

f(x) sin
kπx

l
dx)e−a2( kπ

l
)2

(t−s) sin
kπ

l
x

所以我们知道

⎧⎪⎨⎪⎩ ∂u

∂t
− a2 ∂ 2u

∂x2
= f(x, t), t > 0,x ∈ (0, l)

u(0, t) = u(l, t) = 0
u|t=0 = 0

⎧⎪⎨⎪⎩( ∂

∂t
− a2 ∂ 2

∂x2
)v(x, t, s) = 0, t > s

v(0, t, s) = v(l, t, s) = 0
v(x, s, s) = f(x, s)

( ∂

∂t
− a2 ∂ 2

∂x2
)u(x, t) = ∫

t

0

( ∂

∂t
− a2 ∂ 2

∂x2
)v(x, t, s)ds + v(x, t, t)

= v(x, t, t) = f(x, s)



u(x, t) = ∫
t

0

( 2

l

∞

∑
k=1

(∫
l

0

f(x) sin
kπx

l
dx)e−a2( kπ

l
)2

(t−s) sin
kπ

l
x)ds

第二个方法是使用常数变易法，由于我们已经得到了特征函数系，我们可以把方程

(P0) :

中的 u, f,φ 均使用正交系展开，得到

u(x, t) =
∞

∑
k=1

uk(t) sin
kπ

l
x, f(x, t) =

∞

∑
k=1

fk(t) sin
kπ

l
x, φ(x) =

∞

∑
k=1

φk sin
kπ

l
x

其中

ξk(t) =
2

l
∫

l

0
ξ(x, t) sin

kπ

l
xdx, ξ ∈ {u, f}, φk =

2

l
∫

l

0
φ(x) sin

kπ

l
xdx

将上式代入 (P0) 中，一通化简得到(注意相等是逐系数相等)：

从而我们得到

uk = (φk + ∫
t

0

fk(s)ea
2( kπ

l
)

2
sds)e−a2( kπ

l
)

2
t = φke

−a2( kπ

l
)

2
t

(P1)

+ (∫
t

0

fk(s)ea
2( kπ

l
)

2
sds)e−a2( kπ

l
)

2
t

(P2)

Example

我们可以计算一些例子：考虑方程

这是一个齐次的方程，我们直接套公式得到：

Example

考虑方程

⎧⎪⎨⎪⎩ ∂u

∂t
− a2 ∂ 2u

∂x2
= f(x, t), t > 0,x ∈ (0, l)

u(0, t) = u(l, t) = 0
u|t=0 = φ(x)

⎧⎪⎨⎪⎩u′
k(t) + a2( kπ

l
)

2

uk(t) = fk(t)

uk(0) = φk




⎧⎪⎨⎪⎩ ∂u

∂t
−

∂ 2u

∂x2
= 0, 0 < x < π, t > 0

u(0, t) = u(π, t) = 0
u(x, 0) = sinx

u(x, t) =
2

π

∞

∑
k=1

(∫
π

0
sinx sin kx dx)e−k2t sin kx

=
2

π
(∫

π

0
sin2 x dx)e−t sinx

= e−t sinx



对应齐次方程为：

耍流氓不妨设 u(x, t) = X(x)T (t)，别问为什么可以分离变量，因为这样能做出来. 然后分情况一通剥蒜讨
论，解出来正交系然后展开即可. 非齐次的情况继续展开.

Chapter 4 二阶线性双曲方程

4.1 波动算子的基本解

所谓波动方程即

∂ 2u

∂t2
− a2Δu = f(x, t)

其中 f(x, t) 为外力，当 n = 3 时，设下面基本解为 E(x, t)：

∂ 2

∂t2
− Δ

即

∂ 2E(x, t)

∂t2
− a2ΔE(x, t) = δ(x, t) = δ(x)δ(t)

还是一样，对 x 进行 Fourier 变换，得到

∂ 2Ê(ξ, t)

∂t2
+ a2|ξ|2Ê(ξ, t) = δ(t)

这是一个非齐次的二阶线性 ODE，ODE知识告诉我们

Ê(ξ, t) = k1(ξ, t) sin(a|ξ|t) + k2(ξ, t) cos(a|ξ|t)

对 t 求导有

∂Ê

∂t
= k′

1 sin(a|ξ|t) + k2 cos(a|ξ|t)a|ξ| + k′
2 cos(a|ξ|t) − k2 sin(a|ξ|t)a|ξ|

我们人为令

k′
1 sin(a|ξ|t) + k′

2 cos(a|ξ|t) = 0

于是我们有

∂ 2Ê

∂t2
= k′

1 cos(a|ξ|t)a|ξ| − k1 sin(a|ξ|t)a2|ξ|2 − k′
2 sin(a|ξ|t)a|ξ| − k2 cos(a|ξ|t)a2|ξ|2

⎧⎪⎨⎪⎩ ∂u

∂t
− a2 ∂ 2u

∂x2
= x(l − x), 0 < x < l

u(0, t) = 0 =
∂u

∂x
(l, t)

u(x, 0) = sin
πx

l
− x

⎧⎪⎨⎪⎩ ∂u

∂t
− a2 ∂ 2u

∂x2
= 0, 0 < x < l

u(0, t) = 0 =
∂u

∂x
(l, t)
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于是得到

∂ 2Ê

∂t2
+ a2|ξ|2Ê = k′

1 cos(a|ξ|t)a|ξ| − k′
2 sin(a|ξ|t)a|ξ|

于是希望

k′
1 cos(a|ξ|t)a|ξ| − k′

2 sin(a|ξ|t)a|ξ| = δ(t)

所以希望解的方程为：

{

第一个式子 × cos(a|ξ|t)a|ξ| 再减去第二个式子 × sin(a|ξ|t) 得到

k′
2(cos2(a|ξ|t) + sin2(a|ξ|t))a|ξ| = −δ(t) sin(a|ξ|t)

于是得到

k′
2a|ξ| = 0 ⟹ k′

2 = 0

于是对于变量 t 而言，k2 是一个常数. 我们取 k2 = 0，得到

{

同理可得到

k′
1a|ξ| = δ(t) cos(a|ξ|t) = δ(t)

即

k′
1 =

δ(t)

a|ξ|

于是得到两个解，一个表示正向传播的波，一个表示负向传播的波

k+
1 (ξ, t) =

H(t)

a|ξ|
, k−

1 (ξ, t) =
−H(−t)

a|ξ|

于是我们得到两种情况的基本解：

Ê+ :=
1

a|ξ|
H(t) sin(a|ξ|t), Ê− :=

(−1)

a|ξ|
H(−t) sin(a|ξ|t)

为了求出 E(x, t)，我们有两种方法.

法1： 设曲面

S = {x ∣ p(x) = 0, dp(x) ≠ 0, p ∈ C∞}

我们定义广义函数

δ(p(x)) ∈ D
′(R)

为

⟨δ(p(x)),φ⟩ := ∫
p(x)=0

φ(x)dS, ∀φ ∈ C∞
0 (Rn)

我们注意到

k′
1 sin(a|ξ|t) + k′

2 cos(a|ξ|t) = 0
k′

1 cos(a|ξ|t)a|ξ| − k′
2 sin(a|ξ|t)a|ξ| = δ(t)

k′
1 sin(a|ξ|t) = 0

k′
1 cos(a|ξ|t)a|ξ| = δ(t)



sing supp δ(p(x)) = supp δ(p(x)) = {x ∣ p(x) = 0}

额外的，如果是紧集，则 δ(p(x)) ∈ E
′ ⊆ S

′. 于是有

ˆδ(p(x)) = ⟨δ(p(x)), e−ixξ⟩ = ∫
p(x)=0

e−ixξdsx

当 n = 3 的时候，设

p(x) = r − |x|

则有

S = {x: |x| = r}

有

x ⋅ ξ = |x||ξ| cos θ

令 x≥0 轴经过 ξ 点，有

当 t > 0 时，令 r = at(a > 0)，我们有

于是

E+(x, t) =
1

4πa2t
H(t)δ(at − |x|)

当 t < 0 时，令 r = −at > 0(a > 0)，同理有

Ê−(ξ, t) =
−1

4πa2t
H(−t)δ̂(at + |x|)(ξ)

于是

E−(x, t) =
1

4πa2t
(−H(−t))δ(at + |x|)

δ̂(r − |x|)(ξ) = ∫
|x|=r

e−i|x||ξ| cos θdSx

= ∫
2π

0
∫

π

0
e−i|x||ξ| cos θr2 sin θdθdφ

= 2πr2 ∫
1

−1
e−ir|ξ|ydy

=
4πr

|ξ|
sin(r|ξ|)

Ê+(ξ, t) =
1

a|ξ|
H(t) sin(a|ξ|t)

=
4πat

|ξ|
( 1

a
H(t)) sin(a|ξ|t)

1

4πat

=
1

4πa2t
H(t)( 4πat

|ξ|
sin(a|ξ|t))

=
1

4πa2t
H(t)δ̂(r − |x|)(ξ)

基本解形如

(定理)  波动方程基本解



法2： 利用 Fourier 逆变换直接计算，以 n = 3 为例：

E+(x, t) = F −1Ê+(ξ, t) = (2π)−3H(t)∫
R3

sin(a|ξ|t)

a|ξ|
eixξdξ

其中，x ⋅ ξ = |x| ⋅ |ξ| ⋅ cos θ，令 ξ 轴过 x 点，记 |ξ| = ρ

⇒ E+(x, t) = (2π)−3H(t)∫
+∞

0

sin(aρt)

aρ
ρ2dρ∫

2π

0
dφ∫

π

0
ei|x|ρ cos θ sin θdθ

由 supp δ = {|x| = at} ⇒ E+(x, t) = H(t)
1

4πa2t
δ(at − |x|), t > 0

E−(x, t) = −
H(−t)

4πa|x|
δ(at + |x|), t < 0的情况完全类似

4.2 一维波动方程

4 .2 .1 初值问题

我们考虑方程

(P) :

利用叠加原理，我们只需要分别考虑两个方程：

(P1) : , (P2) :

现在我们来求解 (P1)：我们作换元

(2π)−3H(t)
2π

a
∫

∞

0
sin(aρt)ρdρ∫

−1

1
cos(|x|ρy) + i sin(|x|ρy)(−1)dy

=
H(t)

a|x|
(2π)−2 ∫

+∞

0

sin(aρt)2 ⋅ sin(|x|ρ)dρ

=
H(t)

4π2a|x|
∫

+∞

0
cos(|x| − at)ρ − cos(|x| + at)ρdρ

=
H(t)

4π2a|x|
lim

A→+∞

sin[A(|x| − at)]

|x| − at
−

sin[A(|x| + at)]

|x| + at

H(t)

4πa|x|
(δ(|x| − at) − δ(|x| + at))

H(t)

4πa|x|
δ(|x| − at), t > 0

cos θ=y
−→

lim
n→∞

1
π
∫ +∞

−∞
sinnx

x
dx=δ(x)

−→

t>0时|x|+at>0所以δ(|x|+at)=0
−→

⎧⎪⎨⎪⎩ ∂ 2u

∂t2
− a2 ∂ 2u

∂x2
= f(x, t), t > 0,x ∈ R

u|t=0 = φ(x)
∂u

∂t t=0

= ψ(x)∣⎧⎪⎨⎪⎩ ∂ 2u

∂t2
− a2 ∂ 2u

∂x2
= 0, t > 0,x ∈ R

u|t=0 = φ(x)
∂u

∂t t=0

= ψ(x)∣ ⎧⎪⎨⎪⎩ ∂ 2u

∂t2
− a2 ∂ 2u

∂x2
= f(x, t), t > 0,x ∈ R

u|t=0 = 0
∂u

∂t t=0

= 0∣E+(x, t) =
1

4πa2t
H(t)δ(at − |x|)

与

E−(x, t) =
1

4πa2t
(−H(−t))δ(at + |x|)
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ξ = x − at, η = x + at

于是我们有

∂u

∂x
=

∂u

∂ξ

∂ξ

∂x
+

∂u

∂η

∂η

∂x
=

∂u

∂ξ
+

∂u

∂η

于是

∂ 2u

∂x2
=

∂ 2u

∂ξ2
+ 2

∂ 2u

∂ξ∂η
+

∂ 2u

∂η2

而

∂u

∂t
= a( ∂u

∂η
−

∂u

∂ξ
)

从而

∂ 2u

∂t2
= a2(

∂ 2u

∂ξ2
− 2

∂ 2u

∂ξ∂η
+

∂ 2u

∂η2
)

所以我们得到

0 =
∂ 2u

∂t2
− a2 ∂ 2u

∂x2
= −4a2 ∂ 2u

∂ξ∂η

所以

∂ 2u

∂ξ∂η
= 0

于是

∂u

∂ξ
= F̃(ξ)

于是

u(ξ, η) = F(ξ) + G(η)

从而

u(x, t) = F(x − at) + G(x + at)

结合我们的初值条件：

于是我们有

{

于是有

解方程得到

⎧⎪⎨⎪⎩u|t=0 = φ(x)
∂u

∂t t=0
= ψ(x)∣F(x) + G(x) = φ(x)

a (−F ′(x) + G′(x)) = ψ(x)

⎧⎪⎨⎪⎩F(x) + G(x) = φ(x)

a (−F(x) + G(x)) + C = ∫
x

x0

ψ(y)dy



于是

u(x, t) =
1

2
(φ(x − at) + φ(x + at)) +

1

2a
∫

x+at

x−at

ψ(y)dy

现在来求解 (P2)，即

我们使用 Duhamel 原理将其变成一个齐次化的问题，令 v(x, t, s) 满足方程

令

u(x, t) = ∫
t

0
v(x, t, s)ds

由于

v(x, t, s) =
1

2a
∫

x+a(t−s)

x−a(t−s)
f(y, s)dy

于是 P2 的解为

u2(x, t) =
1

2a
∫

t

0
∫

x+a(t−s)

x−a(t−s)
f(y, s)dyds

故由叠加原理可知 (P) 的解为

u(x, t) =
1

2
(φ(x − at) + φ(x + at)) +

1

2a
∫

x+at

x−at

ψ(y)dy +
1

2a
∫

t

0
∫

x+a(t−s)

x−a(t−s)
f(y, s)dyds

⎧⎪⎨⎪⎩F(x) =
1

2
φ(x) −

1

2a
∫

x

x0

ψ(y)dy +
c

2a

G(x) =
1

2
φ(x) +

1

2a
∫

x

x0

ψ(y)dy −
c

2a

⎧⎪⎨⎪⎩ ∂ 2u

∂t2
− a2 ∂ 2u

∂x2
= f(x, t), t > 0

u|t=0 = 0
∂u

∂t t=0

= 0∣⎧⎪⎨⎪⎩( ∂ 2

∂t2
− a2Δ)v = 0, t > s

u(x, t, t) = 0
∂v

∂t
(x, t, t) = f(x, t)

✏️笔记：

1. 特征线与函数值的传递

设： F(x − at) 和 G(x + at) 为任意可微函数。

在 (x, t) 平面（板书注：相空间/物理空间）中考虑 特征线 (Characteristic  Lines)。

考察方程 x − at =常数。
假设特征线经过初始时刻 t = 0 时的点 x0，则特征线方程为：

x − at = x0 − a ⋅ 0 = x0



4 .2 .2 弦振动方程的初边值问题

考虑方程

若取特征线上任意一点 (x1, t1)，满足：

x1 − at1 = x0 − a ⋅ 0

结论：
函数 F  在整条特征线上保持常数：

F(x1 − at1) = F(x0 − a ⋅ 0)

这意味着：t = 0 时刻 x0 处的波形数值，会被“搬运”到 t1 时刻的 x1 处。

2. 物理意义：波的传播

A. 正波 (Positive Wave / Forward Wave)

对于项 F(x − at)：

B. 反波 (Inverse Wave / Backward Wave)

对于项 G(x + at)：

3. 通解的结构：叠加原理

对于初值问题 (P)，一维波动方程 utt − a2uxx = 0 的通解 u(x, t) 具有如下形式：

u(x, t) = F(x − at)

正波

+ G(x + at)

反波

总结：
一维波动方程的解，在物理上可以解释为 正波与反波的叠加。

含义： 表示在 0 时刻 x0 处的波（扰动），在 t1 时刻于 x1 处重新出现了。

传播速度推导：
由特征线方程 x1 − at1 = x0 可得位移与时间的关系：

x1 − x0 = a(t1 − 0)

即传播速度为：

v =
x1 − x0

t1 − 0
= a

结论： a 为波传播的速度。

定义： F(x − at) 表示以速度 a 向 x 轴正方向 传播的波，称为 正波。

同理，考察 x + at =常数。

其传播速度为 −a。

定义： G(x + at) 表示以速度 −a 向 x 轴负方向 传播的波，称为 反波（反向的波）。
(板书示意图：两个钟形波包，分别向左和向右移动)

 
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(Pd):

还是使用叠加原理：

(Pd1
):

与

(Pd2
):

使用分离变量法求解 (Pd1)，假设

u(x, t) = X(x)T (t)

带入方程就会得到

X ′′(x)

X(x)
=

T ′′(t)

a2T (t)
= −μ

变成 S-L 问题：

{

对 μ 分情况讨论：当 μ < 0 时，有

X(x) = C1e
√−μx + C2e

−√−μx

代入初值得到

C1 = C2 = 0

平凡解，舍去. 当 μ = 0 时，有

X(x) = C1 + C2x

代入得到

C1 = C2 = 0

平凡解，舍去. 当 μ > 0 时，有

X(x) = C1 cos(√μx) + C2 sin(√μx)

代入 X(0) = 0 得到

C1 = 0

代入 X(l) = 0 得到

⎧⎪⎨⎪⎩ ∂ 2u

∂t2
− a2 ∂ 2u

∂x2
= f(x, t), t > 0

u|t=0 = φ(x),
∂u

∂t t=0

= ψ(x)

u(0, t) = u(l, t) = 0∣⎧⎪⎨⎪⎩ ∂ 2u

∂t2
− a2 ∂ 2u

∂x2
= 0, t > 0

u|t=0 = φ(x),
∂u

∂t t=0

= ψ(x)

u(0, t) = u(l, t) = 0∣⎧⎪⎨⎪⎩ ∂ 2u

∂t2
− a2 ∂ 2u

∂x2
= f(x, t), t > 0

u|t=0 = 0,
∂u

∂t t=0

= 0

u(0, t) = u(l, t) = 0∣X ′′(x) + μX(x) = 0
X(0) = X(l) = 0



C2 sin(√μl) = 0

故所有非平凡解为

Xk(x) = Ck sin
kπ

l
x, μk = ( kπ

l
)

2

将 μk 代入得到

T ′′
k (t) + a2μkTk(t) = 0

即

Tk(t) = Ak cos( kπa

l
t)+ Bk sin( kπa

l
t)

于是

uk(x, t) = Xk(x)Tk(t)

从而

u(x, t) =
∞

∑
k=1

uk(x, t) =
∞

∑
k=1

(Ak cos( kπa

l
t)+ Bk sin( kπa

l
t)) sin( kπ

l
x)

利用初值 u|t=0 = φ(x) 与 ∂u

∂t t=0

= ψ(x) 来确定 Ak,Bk，有

所以最后我们得到：

Ak =
2

l
∫

l

0
φ(x) sin( kπx

l
)dx, Bk =

2

kπa
∫

l

0
ψ(x) sin( kπx

l
)dx

对于方程 (Pd2
)，使用 Duhamel 原理：若 w(x, t, τ) 是下面初边值问题的解

则

u(x, t) = ∫
t

0

w(x, t, τ)dτ

为 (Pd2
) 的解. 从而利用 (Pd1

) 的解我们知道

w(x, t, τ) =
∞

∑
k=1

Bk(τ) sin
kπa(t − τ)

l
sin

kπx

l

其中

Bk(τ) =
2

kπa
∫

l

0

f(y, τ) sin
kπy

l
dy

––∣ ⎧⎪⎨⎪⎩φ(x) =
∞

∑
k=1

Ak sin( kπ

l
x)

ψ(x) =
∞

∑
k=1

Bk

kπa

l
sin(

kπ

l
x)

⎧⎪⎨⎪⎩ ∂ 2w

∂t2
− a2 ∂ 2w

∂x2
= 0, t − τ > 0

w|t=τ = 0,
∂w

∂t t=τ

= f(x, τ)

w|x=0 = w|x=l = 0∣



于是我们知道

u(x, t) = ∫
t

0

∞

∑
k=1

Bk(τ) sin
kπa(t − τ)

l
sin

kπx

l
dτ

为 (Pd2
) 的解.

4 .2 .3 利用反射求解有限长弦的波动方程

u(x, t) = F(x − at) + G(x + at)

正波 F(x − at) 沿特征呈 x − at = 常数 传播，速度为 a. 反波 G(x + at) 沿特征呈 x + at =常数 传播，速度为 −a.
若要求满足

u(0, t) = 0

即

F(−at) + G(at) = 0

从而反波可以用正波代替. 即

u(x, t) = F(x − at) − F(−at − x)

若要求

u(l, t) = 0

则

F(l − at) + G(l + at) = 0

若将解定义到 [0, l] 上，则 F ,G 也定义到 [0, l] 上，令 T = at，有

0 ≤ T ≤ l, −l ≤ −T ≤ 0

于是可以令 F ,G 定义到 [−l, l] 上，重复以上分析，我们知道 F ,G 都可以延拓成 R 上以 2l 为周期的函数. 从而我
们知道

u(x, 0) = F(x) + G(x) = F(x) − F(−x)

∂u

∂t
(x, 0) = −a(F ′(x) − F ′(−x))

初值也延拓为 2l 周期函数，并且为奇函数.

4 .2 .4 初值问题的解与初边值问题之间的关系

在这一节我们研究如何把达朗贝尔公式硬生生地算成傅里叶级数的形式，达朗贝尔公式：

u =
1

2
[φ(x + at) + φ(x − at)] + …

本来是解无限长弦的，奇延拓+周期延拓：为了让这个公式能解两端固定的有限弦 [0, l]，必须强制让初始波形 φ
和 ψ 变成奇函数且以 2l 为周期.

考虑 φ(x),x ∈ [0, l] 奇延拓到 [0, l] 之外，以 2l 为周期，同理 ψ(x),x ∈ [0, l]，延拓到以 2l 为周期的奇函数. 从而由
达朗贝尔公式有

u(x, t) =
1

2
(φ(x + at) + φ(x − at)) +

1

2a
∫

x+at

x−at

ψ(y)dy

其中
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φ(x) =
∞

∑
n=1

an sin
nπx

l
, ψ(x) =

∞

∑
n=1

bn sin
nπx

l

代入得到

其中第三个等号是因为

∫
x+at

x−at

sin
nπy

l
dy =

l

nπ
(− cos

nπ(x + at)

l
+ cos

nπ(x − at)

l
) =

2l

nπ
sin

nπx

l
sin

nπat

l

最后得到的式子：

u(x, t) =
∞

∑
n=1

(An cosωnt + Bn sinωnt) sin
nπx

l

这正是我们在教材里通过 分离变量法（设 u(x, t) = X(x)T (t)）解出来的标准形式！

u(x, t) =
1

2
(φ(x + at) + φ(x − at)) +

1

2a
∫

x+at

x−at

ψ(y)dy

=
∞

∑
n=1

an sin
nπx

l
cos

nπat

l
+

1

2a
∫

x+at

x−at

∞

∑
n=1

bn sin
nπy

l
dy

=
∞

∑
n=1

(an sin
nπx

l
cos

nπat

l
+

l

nπa
bn sin

nπat

l
sin

nπx

l
)

=
∞

∑
n=1

(an cos
nπat

l
+

l

nπa
bn sin

nπat

l
) sin

nπx

l

⚠️注意：

这坨计算的物理意义极其深刻：

1. 左边（达朗贝尔）：通过“行波”的叠加来描述运动。这是一种拉格朗日式的视角，追踪波的去
向。

2. 右边（级数解）：通过“驻波”（简谐振动模式）的叠加来描述运动。这是一种欧拉式的视角，看
每个点怎么抖。

3. 结论：行波与驻波是同一个物理过程的两种不同数学表达。 所有的驻波（琴弦震动）本质上都是
两列相反方向行波干涉的结果；而所有的行波在受限区域内都可以分解为无数个驻波模式的叠
加。

我们可以用波的反射讨论半无界弦的振动问题：

我们假设 x ∈ (−∞, 0) 仍有弦存在，只在振动过程中 x = 0 点保持不动，设 Φ(x) 与 Ψ(x) 为 φ(x) 与
ψ(x) 奇延拓之后的函数. 我们有

🕹️ 例子： 半无界弦的振动问题

⎧⎪⎨⎪⎩ ∂ 2u

∂t2
− a2 ∂ 2u

∂x2
= 0, 0 < x < ∞, t > 0

u(0, t) = 0
u(x, 0) = φ(x)
∂u

∂t
(x, 0) = ψ(x)



u(x, t) =
1

2
(Φ(x + at) + Φ(x − at)) +

1

2a
∫

x+at

x−at

Ψ(y)dy

又因为

u(0, t) = 0

于是

0 =
1

2
(Φ(−at) + Φ(at)) +

1

2a
∫

at

−at

Φ(y)dy

满足条件.

证明：

这是一个定义在光锥内部的常数函数，在 t > 0 时，只要 |x| ≤ at，函数值就是 
1

2a
；除此之外都是 0.

要证明 E 是基本解，就是要在分布意义下证明它作用于任何测试函数 φ(x, t) 都会得到 φ(0, 0)：

⟨
∂ 2E

∂t2
− a2 ∂ 2E

∂x2
,φ⟩ = ⟨E,

∂ 2φ

∂t2
− a2 ∂ 2φ

∂x2
⟩

为了计算这个积分，板书引入变换：

{

原区域 t > 0, (at)2 > x2 变换为新坐标下的第一象限 y > 0, z > 0，波动算子 
∂ 2

∂t2
− a2 ∂ 2

∂x2
 在新坐标下变得

非常简洁，变成了混合偏导数 4a2 ∂ 2

∂y∂z
：

∂ 2

∂t2
=

∂

∂t
( ∂

∂y

∂y

∂t
+

∂

∂z

∂z

∂t
) = a

∂

∂t
( ∂

∂y
+

∂

∂z
) = a2( ∂ 2

∂y2
+

∂ 2

∂z2
)+ 2a2 ∂ 2

∂y∂z

并且

∂ 2

∂x2
=

∂ 2

∂y2
+

∂ 2

∂z2
− 2

∂ 2

∂y∂z

所以有

∂ 2

∂t2
− a2 ∂ 2

∂x2
= 4a2 ∂ 2

∂y∂z

y = at + x

z = at − x

函数

E(x, t) = {

是弦振动算子基本解.

1

2a
, (at)2 − x2 ≥ 0, t ≥ 0

0, otherwise

(定理)  一维弦振动算子基本解



证明了 E 是基本解之后，我们可以展示如何用它来解初值问题，波动方程的非齐次项解通常写成

u = E ∗ f

在初值问题中，利用 E 可以构造出通解的两部分

E(x, t) ∗(x) ψ(x) = ∫
∞

−∞
E(x − y, t)ψ(y)dy

因为 E 的支撑集是有限的，所以这个无穷积分变成了有限区间的积分：

=
1

2a
∫

x+at

x−at

ψ(y)dy

这是达朗贝尔公式的第二项，而

∂

∂t
(E ∗ φ) =

∂

∂t
( 1

2a
∫

x+at

x−at

φ(y)dy) =
1

2a
[aφ(x + at) + aφ(x − at)] =

1

2
[φ(x + at) + φ(x − at)]

这是达朗贝尔公式的第一项.

4.3 n = 2, 3 Cauchy 问题

4 .4 .1 n = 3 波动方程 Cauchy 问题

考虑方程

我们令

ũ(x, t) = H(t)u(x, t)
t>0
= u(x, t)

有

( ∂ 2

∂t2
− a2Δ)ũ(x, t) = F(x, t)

并且由换元公式我们有

dxdt =
1

2a
dydz

将上述变换代入积分，令 ψ(y, z) = φ(x, t)：

⟨E,
∂ 2φ

∂t2
− a2 ∂ 2φ

∂x2
⟩ = ∫

y>0,z>0

1

2a

E的值

⋅ 4a2 ∂ 2ψ

∂y∂z

算子变换

⋅
1

2a
Jacobian

dydz

利用微积分基本定理以及测试函数在无穷远处为 0 的性质

∫
∞

0

∫
∞

0

∂ 2ψ

∂y∂z
dydz = ψ(0, 0)

而 ψ(0, 0) 就是原坐标下的 φ(0, 0)，于是 E 确实就是基本解.

  

⎧⎪⎨⎪⎩ ∂ 2u

∂t2
− a2Δu = f(x, t), t > 0

u|t=0 = φ(x)
∂u

∂t t=0

= ψ(x)∣
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则

ũ(x, t) = E(x, t) ∗ F(x, t)
t>0
= u(x, t)

我们计算

对于任意的 g ∈ C∞
0 ，我们有

于是我们知道

δ′(t)u(x, t) = −δ(t)(∂tu) + ∂t(δ(t)u)

于是我们最终得到

( ∂ 2

∂t2
− a2Δ)ũ = ∂t(δ(t)u) + δ(t)∂tu + H(t)f(x, t)

现在开始计算右式前两项，

于是得到

∂t(δ(t)u(x, t)) = ∂t(δ(t)φ(x))

同理

δ(t)∂t(x) = δ(t)ψ(x)

综上，得到

( ∂ 2

∂t2
− a2Δ)ũ =

∂

∂t
(δ(t)φ(x)) + δ(t)ψ(x) + H(t)f(x, t)

于是

( ∂ 2

∂t2
− a2Δ)ũ(x, t) = ( ∂ 2

∂t2
− a2Δ)(H(t)u(x, t))

=
∂ 2

∂t2
(H(t)u(x, t)) − a2Δ(H(t)u(x, t))

=
∂

∂t
(δ(t)u(x, t) + H(t)

∂u

∂t
)− a2H(t)Δu

= δ′(t)u(x, t) + δ(t)
∂u

∂t
+ δ(t)

∂u

∂t
+ H(t)

∂ 2u

∂t2
− H(t)(a2Δu)

= δ′(t)u(x, t) + 2δ(t)
∂u

∂t
+ H(t)f(x, t)

⟨δ′(t)u(x, t), g(t)⟩ = ⟨δ′(t),u(x, t)g(t)⟩

= (−1)⟨δ(t),
∂

∂t
(u(x, t)g(t))⟩

= (−1)⟨δ(t),
∂u

∂t
g(t)⟩− ⟨δ(t),u(x, t)g′(t)⟩

= ⟨−δ(t)(
∂u

∂t
), g(t)⟩+⟨

∂

∂t
(δ(t)u(x, t)), g(t)⟩

⟨∂t(δ(t)u), g⟩ = (−1)⟨δ(t)u(x, t), g′(t)⟩

= (−1)⟨δ(t),u(x, t)g′(t)⟩

= (−1)u(x, 0)g′(0)

= (−1)φ(x)⟨δ(t), g′(t)⟩

= ⟨∂t(δ(t)φ(x)), g(t)⟩



ũ(x, t) = E+(x, t) ∗ ( ∂

∂t
(δ(t)φ(x)) + δ(t)ψ(x) + H(t)f(x, t))

其中，对任意的 g(x, t) ∈ C∞
0 ，都有

所以有

E+(x, t) ∗ (δ(t)ψ(t)) = E+(x, t) ∗x ψ(x)

同理有

E+(x, t) ∗ (∂t(δ(t)φ(x))) = ∂t(E+(x, t) ∗x φ(x))

于是

其中

E+(x, t) =
H(t)

4πa2t
δ(at − |x|)

于是

I1 = ∫
R4

H(τ)f(y, τ)
H(t − τ)

4πa2(t − τ)
δ(a(t − τ) − |x − y|)dSydτ

我们知道若想被积部分不为 0，就要求两个 H 内的东西大于 0，即

0 < τ < t

于是

与

其中 M(ψ) 为 ψ 在球面 |x − y| = at 上的平均值. 同理

I2 = ∂t(tM(φ))

于是得到

⟨E+(x, t) ∗ (δ(t)ψ(x)), g(x, t)⟩ = ⟨E+(x, t), ⟨δ(τ)ψ(y), g(x + y, t + τ)⟩⟩

= ⟨E+(x, t), ⟨ψ(y), g(x + y, t)⟩⟩

= ⟨E+(x, t) ∗x ψ(x), g(x, t)⟩

ũ(x, t) = E+(x, t) ∗ (H(t)f(x, t)) + ∂t(E+(x, t) ∗x φ(x)) + E+(x, t) ∗x ψ(x)

= I1 + I2 + I3

I1 =
1

4πa
∫

t

0

dτ ∫
|x−y|=a(t−τ)

f(y, τ)

|x − y|
dSy

r=a(t−τ)
=

1

4πa
∫

|x−y|≤at

f (y, t −
|x−y|
a

)

|x − y|
(−1

a
)drdSy

=
1

4πa2
∫

|x−y|≤at

f (y, t −
|x−y|
a

)

|x − y|
dy

I3 = ∫
R3

ψ(y)
δ(at − |x − y|)

4πa2t
dSy

=
1

4πa2t
∫

|x−y|=at

ψ(y)dSy

=
t

4π(at)2
∫

|x−y|=at

ψ(y)dSy

= tM(ψ)



设 f ∈ C 2,φ ∈ C 3,ψ ∈ C 3，从而有

u(x, t) ∈ C 2

于是我们得到形式解，现在只需要验证 u(x, t) 满足方程和初值条件，首先验证满足方程：

( ∂ 2

∂t2
− a2Δ)ũ(x, t) = H(t)f(x, t) + ∂t(δ(t)φ(x)) + δ(t)ψ(x)

t>0
= f(x, t)

现在需要验证满足初值条件:

这等价于证明（1）

lim
t→0+

(I1 + ∂t(tM(φ)) + tM(ψ)) = φ(x)

这只需要证明

lim
t→0+

I1 = 0, lim
t→0+

∂t(tM(φ)) = φ(x), lim
t→0+

tM(ψ) = 0

与证明（2）

lim
t→0+

∂u

∂t
(x, t) = ψ(x)

这只需要证明

lim
t→0+

∂tI1 = 0, lim
t→0+

∂ 2
t (tM(φ)) = 0, lim

t→0+
∂t(tM(ψ)) = ψ(x)

u(x, t)
t>0
= ũ(x, t) = H(t)u(x, t)

=
1

4πa2
∫

|x−y|≤at

f (y, t −
|x−y|
a

)

|x − y|
dy + ∂t(tM(φ)) + tM(ψ)

⎧⎪⎨⎪⎩ lim
t→0+

u(x, t) = φ(x)

lim
t→0+

∂u

∂t
(x, t) = ψ(x)

证明：

我们挨个证明

对于 ∂tI1，有

对于 I3

I1 =
1

4πa2
∫

|x−y|≤a(t−τ)

f (y, t − |x−y|
a

)

|x − y|
dy

=
1

4πa2
∫

at

0

∫
2π

0

∫
π

0

f (r sin θ cosφ, r sin θ sinφ, r cosφ, t − r
a
)

r
r2 sin θdθdφdr

→ 0 (t → 0+)

∂I1

∂t
=

∂

∂t
( 1

4πa2
∫

at

0
∫

2π

0
∫

π

0

f (r sin θ cosφ, r sin θ sinφ, r cosφ, t − r
a
)

r
r2 sin θdθdφdr)

=
a

4πa2
∫

2π

0

∫
π

0

f ⋅ at sin θdθdφ +
1

4πa2
∫

at

0

∂

∂t
(∫

2π

0

∫
π

0

f

r
r2 sin θdθdφ)dr

t→0+

→ 0 + 0 = 0



lim
t→0+

I3 = lim
t→0+

tMt(ψ) = lim
t→0+

tψ(x∗) = 0 ⋅ ψ(x) = 0

然后对于 ∂tI3

∂t(tMt(ψ)) = Mt(ψ) + t∂tMt(ψ)

由于

lim
t→0+

M(ψ) = ψ(x)

注意到

∫
|x−y|=at

ψ(y)dSy = ∫
|x−y|=1

ψ(x + at(y − x))(at)2dSy = a2t2 ∫
|x−y|=1

ψ(x + at(y − x))dSy

所以

Mt(ψ) =
1

4π
∫

|x−y|=1
ψ(x + at(y − x))dSy

于是得到

于是得到了

lim
t→0+

∂t(tM(ψ)) = ψ(x)

同理有

lim
t→0+

I2 = φ(x)

现在只剩下最后一个，即

∂ 2
t (tM(φ)) = ∂t(M(φ) + t∂tM(φ)) = 2∂tM(φ) + t∂ 2

t M(φ)

由前面计算过程同理可知

lim
t→0+

t∂ 2
t M(φ) = 0

所以只需要证明

lim
t→0+

∂tM(φ) = 0

由于

于是求极限有

lim
t→0+

∂tM(φ) =
a

4π
∫

|x−y|=1

3

∑
i=1

∂φ

∂yi
(x)yidSy

lim
t→0+

t

4π

∂

∂t
(∫

|x−y|=at

ψ(y)dSy) =
t

4π
∫

|x−y|=1

3

∑
i=1

∂ψ

∂yi
ayidSy

= O(t) → 0

∂tM(φ) =
1

4π
∫

|x−y|=1

3

∑
i=1

ayi
∂φ

∂yi
(x + at(y − x))dSy

=
a

4π
∫

|x−y|

3

∑
i=1

∂φ

∂yi
(x + at(y − x))yidSy



4 .4 .2 n = 2 降维法

设 f = 0，有

对其延拓 u(x, y, z) := u(x, y)，变成三维情况，由 n = 3 的解，我们知道

u(x, t) = ∂t(tM(g0)) + tM(g1)

对于 n = 3，

tM(g1) =
t

4π(at)2
∫

|x−y|=at

g1(y)dy

是在球面上积分，我们将球面微元投影下来

就得到了二维的微元：

dy1dy2 = cos θdSy

而

cos θ =
√(at)2 − (x1 − y1)2 − (x2 − y2)2

at

于是通过三维投影到二维，我们可以有

这里 ∂φ

∂yi
(x) 是常数，记为 Ci，于是我们只需要证明

∫
|x−y|=1

3

∑
i=1

CiyidSy = 0

这只需要证明

∫
|x−y|=1

yidSy = 0

由于是对称的，只需要证明 y3 = cos θ 的情况即可，有

∫
|x−y|=1

yidSy = ∫
π

0
∫

2π

0
cos θdφdθ = 0

从而得证，我们知道满足初值条件.

⎧⎪⎨⎪⎩ ∂ 2u

∂t2
− a2( ∂ 2u

∂x2
1

+
∂ 2u

∂x2
2

) = 0

u|t=0 = g0(x1,x2)
∂u

∂t t=0

= g1(x1,x2)∣
d d
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同理

∂t(tM(g0)) = ∂t(
1

2πa
∫
√(x1−y1)2+(x2−y2)2≤at

g0(y1, y2)

√(at)2 − (x1 − y1)2 − (x2 − y2)2
)

4 .4 .3 n = 1 降维法

考虑方程

我们意图将其延拓成三维情况

取一条条带，可以看出微元满足

2πrdy1 = cos θdSy

而

cos θ =
r

at
=

√y2
2 + y2

3

at

于是

dSy = 2πatdy1

所以得到

同理

tM(g1) =
2t

4π(at)2
∫
√(x1−y1)2+(x2−y2)2≤at

g1(y1, y2)
dy1dy2

cos θ

=
2t

4π(at)2
∫
√(x1−y1)2+(x2−y2)2≤at

g1(y1, y2)
at

√(at)2 − (x1 − y1)2 − (x2 − y2)2
dy1dy2

=
1

2πa
∫
√(x1−y1)2+(x2−y2)2≤at

g1(y1, y2)

√(at)2 − (x1 − y1)2 − (x2 − y2)2
dy1dy2

⎧⎪⎨⎪⎩ ∂ 2u

∂t2
− a2 ∂ 2u

∂x2
1

= 0

u|t=0 = g0(x)
∂u

∂t t=0

= g1(x)∣
tM(g1) =

t

4π(at)2
∫

|x−y|=at

g1(y)dSy

=
1

4πa2t
∫

x1+at

x1−at

g1(y1)2πatdy1

=
1

2a
∫

x1+at

x1−at

g1(y1)dy1
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4 .4 .4 波传播的物理意义

n = 3 时波动方程解的构成， 考虑非齐次方程（有外力 f），零初值，则解为

u(x, t) =
1

4πa2
∫

|x−y|≤at

f(y, t −
|x−y|
a

)

|x − y|
dy

当考虑齐次方程（无外力 f = 0），非零初值

波传播的三个阶段（以 n = 3 为例）

令 R = sup
y∈supp g1

d(y,x) 为初始扰动区域到 x 的最远距离，r = inf
y∈supp g1

d(y,x) 为最近距离。根据时间 t 的推移，分

为三个阶段：

阶段 i：波未到达 (0 < t <
r

a
)

阶段 ii：波正在通过 (
r

a
≤ t ≤

R

a
)

阶段 iii：波已通过 (t >
R

a
)

∂t(tM(g0)) =
∂

∂t
( 1

2a
∫

x1+at

x1−at

g0(y1)dy1)

=
1

2a
(g0(x1 + at)a − g0(x1 − at)(−a))

=
1

2
(g0(x + at) + g0(x − at))

物理含义：
x 处在 t 时刻的振动，是该点接收到的来自空间各处 y 的外力 f 的叠加。

迟滞效应：这种叠加不是瞬时的，y 处的外力 f 需要经过 |x − y|

a
 的时间才能传到 x。因此积分里用的

是“推迟时间” t −
|x − y|

a
。

设定：主要讨论初速度 g1 ≠ 0（记为 ψ），初位移 g0 = 0 的情况（g0 ≠ 0 情况类似）。

解的形式：Kirchhoff 公式的一部分

u(x, t) = tMt(g1) =
t

4π(at)2
∫

|x−y|=at

g1(y)dSy

几何意义：解的值取决于以 x 为球心、半径为 at 的球面与初始扰动区域（supp g1）的交集。

状态：以 x 为圆心、半径 at 的球面（积分区域）还很小，未接触到初始扰动区域 supp g1。
结果：交集为空 ⇒ u(x, t) = 0。

物理描述：“平静”（无振动）。

状态：球面 |x − y| = at 切入并穿过 supp g1。
结果：交集非空 ⇒ u(x, t) ≠ 0。

物理描述：“振动”。波的最前端（Wave front）已经到达，最后端（Trailing edge）尚未离开。

状态：球面 |x − y| = at 的半径已经非常大，完全包裹并远离了 supp g1。
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维度的差异：惠更斯原理 vs 波后（Wave Wake）

板书深刻地对比了奇数维（n = 3）和偶数维（n = 2）的本质不同。

时空光锥视角的总结

板书最后几张图引入了光锥的概念来总结上述结论：

结果：因为 n = 3 时积分只在球面上进行，此时球面与实心的扰动区域没有交集 ⇒ u(x, t) = 0。

物理描述：“恢复平静”。

核心结论：这就是强惠更斯原理。波前过后，介质立刻停止振动，没有余波。

1. n = 3（三维）

积分区域：球面（空心皮）。

现象：波一扫而过，过后无痕。

结论：满足强惠更斯原理。

2. n = 2（二维）

降维背景：利用降维法（Method of Descent），三维的球面积分变成了二维的圆盘积分（实心）。

公式特征：

u(x, t) =
1

2πa
∫
√(x1−y1)2+(x2−y2)2≤at

g1(y1, y2)

√(at)2 − (x1 − y1)2 − (x2 − y2)2
dy1dy2

阶段 iii 的差异：
当 t 很大时（波前已过），积分区域是半径为 at 的实心圆盘。
这个大圆盘依然覆盖着初始扰动区域 supp g1。

结果：交集非空 ⇒ u(x, t) ≠ 0。

物理描述：“波后”（Wave Wake）。
即便波的最前端已经过去了，该点依然会持续振动（尽管振幅会随时间衰减）。
结论：偶数维不满足强惠更斯原理。这也解释了为什么水面（近似二维）投石后涟漪会持续很久，而
三维空气中喊一声声音会立刻消失。

3. n = 1（一维）

u(x, t) =
1

2
(g0(x − at) + g0(x + at)) +

1

2a
∫

x+at

x−at

g1(y)dy +
1

2a
∫

t

0
∫

x+a(t−s)

x−a(t−s)
f(y, s)dyds

当 f = 0, g0 = 0, g1 ≠ 0 时，存在明显的波后，当波穿过后仍然在震动。而当 f = 0, g0 ≠ 0, g1 = 0 时，则没
有明显波后.

1. 后向光锥 (Backward Light Cone)：
从 (x, t) 向过去发出的锥体。
它代表了 (x, t) 的依赖区域 (Domain of  Dependence)。

2. 前向光锥 (Forward Light Cone)：



维度对比图示：

这组板书极其清晰地阐述了波动方程的核心几何性质：波的传播行为完全取决于空间维度。奇数高维（n ≥ 3）
波集中在波前（壳）上传播，干净利落（惠更斯原理）；而偶数维和一维波则在波前之后拖着长长的“尾巴”
（波后），产生持续的弥散效应

4.4 能量方法解 n = 2 波动方程的初边值问题

考虑在区域 Ω 上的方程，处理零边值条件

动能为：
1

2
mv2，若 ρ 是面密度(常数)，则动能表示为

U(t) =
1

2
∫

Ω
( ∂u

∂t
)

2

ρdxdy

而势能，令 T  为张力系数(常数)

V (t) =
1

2
∫

Ω
T (( ∂u

∂x
)

2

+ ( ∂u

∂y
)

2

)dxdy

而总能量(在相差一个常数，即除掉一个常系数让方程好看)，令 a2 =
T

ρ
，有

E(t) = U(t) + V (t) = ∫
Ω
( ∂u

∂t
)

2

+ a2(( ∂u

∂x
)

2

+ ( ∂u

∂y
)

2

)dxdy

在无外力即 f = 0 的情况下，总能量是守恒的，所以我们先考虑齐次问题：

从 (x, 0) 向未来发出的锥体。

它代表了初始数据的影响区域 (Domain of  Inf luence)。

n = 3：依赖区域只是光锥的锥面（Surface）。
图形：空心的圆锥面。

意义：只有刚好在 at 距离上的事件影响现在。

n = 2：依赖区域是光锥的实体（Solid interior）。
图形：实心的圆锥体。

意义：距离小于等于 at 的所有事件都持续影响现在。

n = 1：依赖区域是三角形区域（Solid triangle）。
图形：实心的倒三角形（二维时空平面）。

⎧⎪⎨⎪⎩ ∂ 2u

∂t2
− a2( ∂ 2u

∂x2
+

∂ 2u

∂y2
) = f(x, y, t), t > 0

u|t=0 = φ(x, y)
∂u

∂t t=0

= ψ(x, y)

u|∂Ω = 0∣⎧⎪⎨⎪⎩ ∂ 2u

∂t2
− a2(

∂ 2u

∂x2
+

∂ 2u

∂y2
) = 0, t > 0

u|t=0 = φ(x, y)
∂u

∂t t=0

= ψ(x, y)

u|∂Ω = 0∣
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此时由于能量守恒，E(t) 是定值，于是

dE(t)

dt
= 0

我们也可以从数学角度来直接证明

我们可以利用能量守恒来证明解的唯一性.

证明：

我们直接计算：

由于 u|∂Ω = 0 对任意 t 成立，所以 ut|∂Ω = 0，所以上式为 0.

dE(t)

dt
=

d

dt
∫

Ω
(

∂u

∂t
)

2

+ a2((
∂u

∂x
)

2

+ (
∂u

∂y
)

2

)dxdy

= ∫
Ω

2
∂u

∂t

∂ 2u

∂t2
+ 2a2( ∂u

∂x

∂ 2u

∂x∂t
+

∂u

∂y

∂ 2u

∂y∂t
)dxdy

= 2∫
Ω
ututt + a2 (∂x(uxut) − uxxut + ∂y(uyutt) − uyyut)dxdy

= 2∫
Ω

ut (utt − a2 (uxx + uyy))dxdy + 2a2 ∫
Ω

∂x(uxut) + ∂y(uyut)dxdy

= 2a2 ∫
Ω

∇ ⋅ (uxut,uyut)dxdy

= 2a2 ∫
∂Ω

(uxut,uyut) ⋅ →nds

= 2a2 ∫
∂Ω

uxut cos(→n,x) + uyut cos(→n, y)ds

在考虑齐次方程的情况下，有

dE(t)

dt
= 0

考虑方程

⎧⎪⎨⎪⎩ ∂ 2u

∂t2
− a2( ∂ 2u

∂x2
+

∂ 2u

∂y2
) = f(x, y, t), t > 0

u|t=0 = φ(x, y)
∂u

∂t t=0

= ψ(x, y)

u|∂Ω = 0∣(定理)  齐次情况能量守恒

(定理)  零边值初值问题解的唯一性



当外力 f ≠ 0 时

E(t) 与初值和外力有关，我们可以计算

证明：

设 u1,u2 均为解，令 u = u1 − u2，则 u 满足方程

从而能量守恒，则有

E(t) = E(0)

于是我们知道

E(t) = ∫
Ω

( ∂u

∂t
)

2

+ a2(( ∂u

∂x
)

2

+ ( ∂u

∂y
)

2

)dxdy

我们已知

ut|t=0 = 0

而

u|t=0 = 0 ⟹ ux|t=0 = uy|t=0 = 0

所以

E(0) = 0

于是

E(t) = 0

于是

ut = ux = uy = 0

结合 u|t=0 = 0，我们知道 u 恒为 0. 唯一性得证.

⎧⎪⎨⎪⎩ ∂ 2u

∂t2
− a2( ∂ 2u

∂x2
+

∂ 2u

∂y2
) = 0, t > 0

u|t=0 = 0
∂u

∂t t=0

= 0

u|∂Ω = 0∣
⎧⎪⎨⎪⎩ ∂ 2u

∂t2
− a2( ∂ 2u

∂x2
+

∂ 2u

∂y2
) = f(x, y, t), t > 0

u|t=0 = φ(x, y)
∂u

∂t t=0
= ψ(x, y)

u|∂Ω = 0∣ ( )

则解唯一.



利用不等式我们还有

dE(t)

dt
= 2∫

Ω
utfdxdy ≤ ∫

Ω
u2
tdxdy + ∫

Ω
f 2dxdy ≤ E(t) + ∫

Ω
f 2dxdy

在两边乘上 e−t 得到

d

dt
(e−tE(t)) ≤ e−t ∫

Ω
f 2dxdy

积分得到

e−tE(t) − E(0) ≤ ∫
t

0

e−s ∫
Ω

f 2(x, y, s)dxdyds

于是得到：

考虑有限区间 t ∈ [0,T ]，则有

E(t) ≤ C0(E(0) + ∫
T

0

∫
Ω

f 2(x, y, s)dxdyds)

4.5 初边值问题的稳定性.

dE(t)

dt
=

d

dt
∫

Ω

( ∂u

∂t
)

2

+ a2(( ∂u

∂x
)

2

+ ( ∂u

∂y
)

2

)dxdy

= ∫
Ω

2
∂u

∂t

∂ 2u

∂t2
+ 2a2(

∂u

∂x

∂ 2u

∂x∂t
+

∂u

∂y

∂ 2u

∂y∂t
)dxdy

= 2∫
Ω

ututt + a2 (∂x(uxut) − uxxut + ∂y(uyutt) − uyyut)dxdy

= 2∫
Ω

ut (utt − a2 (uxx + uyy))dxdy + 2a2 ∫
Ω

∂x(uxut) + ∂y(uyut)dxdy

= 2∫
Ω
utf(x, y, t)dxdy + 2a2 ∫

∂Ω
uxut cos(→n,x) + uyut cos(→n, y)ds

= 2∫
Ω
utf(x, y, t)dxdy

有

E(t) ≤ et(E(0) + ∫
t

0
e−s ∫

Ω
f 2(x, y, s)dxdyds)

以下方程的解 u

(定理)  能量不等式

(定理)  初边值问题的稳定性
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证明：

为了得到稳定性，我们先得到关于 E0(t) 的能量不等式，其中 E0(t) = ∫
Ω

u2dxdy

dE0(t)

dt
=

d

dt
∫

Ω
u2dxdy = ∫

Ω
2uutdxdy ⩽ ∫

Ω
u2
t + u2dxdy ⩽ E0(t) + E(t)

两边同乘 e−t：

e−t
dE0(t)

dt
− e−tE0(t) ⩽ e−tE(t) ⇒

d

dt
(e−tE0(t)) ⩽ e−tE(t)

从 0 到 t 积分，得：

e−tE0(t) − E0(0) ⩽ ∫
t

0
e−τE(τ)dτ ⇒ E0(t) ⩽ et(E0(0) + ∫

t

0
e−τE(τ)dτ)

代入 E(t) ≤ C0(E(0) + ∫
T

0

∫
Ω

f 2(x, y, s)dxdyds) 得：

E0(t) ⩽ et(E0(0) + C0T (E(0) + ∫
T

0
∫

Ω
f 2dxdydt))

从而得到：

∫
Ω

u2dxdy = E0(t) ⩽ C1(E0(0) + E(0) + ∫
T

0

∫
Ω

f 2dxdydt)

这是关于 E0 的能量不等式.

设 u = u1 − u2，则 u 满足：

关于初值 φ,ψ, f 都是稳定的，即对于任意的 ε > 0，存在依赖 ε,T  的常数 η > 0，使得当

则以 φi,ψi, fi 为初值和外力的解 ui 在 [0,T ] 上满足：

⎧⎪⎨⎪⎩ ∂ 2u

∂t2
− a2( ∂ 2u

∂x2
+

∂ 2u

∂y2
) = f(x, y, t), t > 0

u|t=0 = φ(x, y)
∂u

∂t t=0

= ψ(x, y)

u|∂Ω = 0∣ ⎧⎪⎨⎪⎩||φ1 − φ2||L2(Ω) ≤ η

||φ1x − φ2x||L2(Ω) ≤ η

||φ1y − φ2y||L2(Ω) ≤ η

||ψ1 − ψ2||L2(Ω) ≤ η

||f1 − f2||L2([0,T ]×Ω) ≤ η

⎧⎪⎨⎪⎩||u1 − u2||L2(Ω) ≤ ε

||u1x − u2x||L2(Ω) ≤ ε

||u1y − u2y||L2(Ω) ≤ ε

||u1t − u2t||L2(Ω) ≤ ε



于是

而其余三项

只需要利用能量不等式：

就可以立刻得到.

⎧⎪⎨⎪⎩utt − a2(uxx + uyy) = f1 − f2, in Ω
u|t=0 = φ1 − φ2

∂tu|t=0 = ψ1 − ψ2

u|∂Ω = 0

∥u1 − u2∥2
L2(Ω)

=∫
Ω
u2dxdy = E0(t)

≤C1(E0(0) + E(0) + ∫
T

0

∫
Ω

(f1 − f2)2dxdydt)

=C1(∫
Ω
u2dxdy

t=0
+ ∫

Ω
u2
t + a2(u2

x + u2
y)dxdy

t=0
)+ C1∥f1 − f2∥2

L2([0,T ]×Ω)

≤C1 (∥φ1 − φ2∥2
L2(Ω) + ∥ψ1 − ψ2∥2

L2(Ω) + a2 (∥φ1x − φ2x∥2
L2(Ω) + ∥φ1y − φ2y∥

2
L2(Ω)) + ∥f1 − f2∥2)

≤(3 + 2a2)C1η
2

≤C̃ ⋅ η2 < ε2 ∣ ∣⎧⎪⎨⎪⎩∥u1t − u2t∥
2
L2(Ω) < ε

∥u1x − u2x∥2
L2(Ω) < ε

∥u1y − u2y∥
2
L2(Ω) < ε

∫Ω u2
t + a2(u2

x + u2
y)dxdy ⩽ C0 (E(0) + ∫ T

0 ∫Ω(f1 − f2)2dxdydt)

≤ C0 (E(0) + ||f1 − f2||L2([0,T ]×Ω))

n = 1，满足方程

utt − a2uxx + cut = 0, c > 0

我们将证明总能量随时间减少，并且存在唯一性，我们直接计算

E(t) = ∫
β

α

u2
t + a2u2

xdx

则

🕹️ 例子： 受摩擦力作用且两端固定的有界弦振动

∂E(t)

∂t
= 2∫

β

α

ututt + a2uxuxtdx

= 2∫
β

α

ututt + a2∂x(uxut) − a2uxxutdx

= 2∫
β

α

ut(utt − a2uxx)dx + 2a2 ∫
β

α

∂x(uxut)dx

= −2c∫
β

α

u2
tdx + 2a2 (uxut)|βα



4.6 n = 2 波动方程 Cauchy 问题稳定性

考虑方程

有能量为

E1(t) = ∫
R2

(u2
t + a2(u2

x + u2
y))dxdy

令

Ωt = {(x, y) ∣ (x − x0)2 + (y − y0)2 ≤ a2(t − t0)2}

特别地有

Ω0 = {(x, y) ∣ (x − x0)2 + (y − y0)2 ≤ a2t2
0}

令

E1(Ωt) = ∫
Ωt

(u2
t + a2(u2

x + u2
y))dxdy

则我们断言

由于两端固定，即

u|x=α = u|x=β = 0

于是

ut|x=α = ut|x=β = 0

所以

∂E(t)

∂t
≤ −2c∫

β

α

u2
tdx ≤ 0

而唯一性由

E(t) ≤ E(0) = 0

立刻得到.

⎧⎪⎨⎪⎩ ∂ 2u

∂t2
− a2( ∂ 2u

∂x2
+

∂ 2u

∂y2
) = 0, t > 0

u|t=0 = φ(x, y)
∂u

∂t t=0

= ψ(x, y)∣
证明：

E1(Ωt) ≤ E1(Ω0)

(定理)  断言
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设 0 ≤ t ≤ t0，我们尝试说明

dE1(Ωt)

dt
≤ 0

直接计算

故证毕.

dE1(Ωt)

dt
=

d

dt
(∫

Ωt

(u2
t + a2(u2

x + u2
y))dxdy)

=
d

dt
(∫

a(t0−t)

0
∫

2πr

0
(u2

t + a2(u2
x + u2

y))dsdr)

= ∫
a(t0−t)

0
∫

2πr

0
(2ututt + 2a2(uxuxt + uyuyt))dsdr

−a∫
∂Ωt

(u2
t + a2 (u2

x + u2
y))ds

= 2∫
a(t0−t)

0

∫
2πr

0

ututt + a2 (∂x(uxut) + ∂y(uyut) − uxxut − uyyut)dsdr

−a∫
∂Ωt

(u2
t + a2 (u2

x + u2
y))ds

= 2∫
Ωt

ut (utt − a2 (uxx + uyy))dxdy + 2a2 ∫
Ωt

∂x(uxut) + ∂y(uyut)dxdy

−a∫
∂Ωt

(u2
t + a2 (u2

x + u2
y))ds

= 2a2 ∫
∂Ωt

uxut cos(x, →n) + uyut cos(y, →n)ds − a∫
∂Ωt

(u2
t + a2 (u2

x + u2
y))ds

= −a∫
∂Ωt

(u2
t + a2 (u2

x + u2
y) − 2a (uxut cos(x, →n) + uyut cos(y, →n)))ds

= −a∫
∂Ωt

((ut cos(x, →n) − aux)
2

+ (ut cos(y, →n) − auy)
2)ds ≤ 0

证明：

若 u1,u2 都是问题的解，令 u = u1 − u2，则满足方程

初值问题

有唯一解.

⎧⎪⎨⎪⎩ ∂ 2u

∂t2
− a2( ∂ 2u

∂x2
+

∂ 2u

∂y2
) = 0, t > 0

u|t=0 = φ(x, y)
∂u

∂t t=0
= ψ(x, y)∣(定理)  Cau chy 问题解的唯一性



当 f = 0 时，有

E0(Ωt) = ∫
Ωt

u2dxdy

所以求导有

两边同时乘 e−t，得到

d

dt
(e−tE0(Ωt)) ≤ e−tE1(Ωt)

两边在 (0, t) 积分得到

e−tE0(Ωt) − E0(Ω0) ≤ ∫
t

0

e−sE1(Ωs)ds

所以得到

E0(Ωt) ≤ et(E0(Ω0) + ∫
t

0

e−sE1(Ωs)ds)

由于在 (0, t0) 上，有

E1(Ωt) ≤ E1(Ω0)

有 0 初值条件，有其能量为

E1(Ω0) = ∫
Ω0

(u2
t + a2 (u2

x + u2
y))dxdy = 0

于是由于

0 ≤ E1(Ωt) ≤ E1(Ω0) = 0

于是

E1(Ωt) = 0

所以

ut = ux = uy = 0

所以 u 是常数，再由 u|t=0 = 0，所以 u 恒为 0，于是唯一性得证.

⎧⎪⎨⎪⎩ ∂ 2u

∂t2
− a2( ∂ 2u

∂x2
+

∂ 2u

∂y2
) = 0, t > 0

u|t=0 = 0
∂u

∂t t=0

= 0∣dE0(Ωt)

dt
=

d

dt
∫

Ωt

u2dxdy

= 2∫
Ωt

uutdxdy − a∫
∂Ωt

u2ds

≤ 2∫
Ωt

uutdxdy

≤ ∫
Ωt

u2dxdy + ∫
Ωt

u2
tdxdy

≤ E0(Ωt) + E1(Ωt)



所以

E0(Ωt) ≤ C(E1(Ω0) + E0(Ω0))

于是我们得到了这种情况下的能量不等式.

证明：

令 u = u1 − u2，满足方程

有

||u1 − u2||L2(Ωt) = E0(Ωt) ≤ C(E1(Ω0) + E0(Ω0))

其中

E0(Ω0) = ||φ1 − φ2||L2(Ω0) ≤ η

而

再注意到同时

⎧⎪⎨⎪⎩ ∂ 2u

∂t2
− a2( ∂ 2u

∂x2
+

∂ 2u

∂y2
) = 0, t > 0

u|t=0 = φ1(x, y) − φ2(x, y)
∂u

∂t t=0

= ψ1(x, y) − ψ2(x, y)∣E1(Ω0) = ∫
Ω0

(u2
t + a2 (u2

x + u2
y))dxdy

= ∫
Ω0

(ψ1 − ψ2)
2

+ a2(φ1x − φ1y)
2

+ a2(φ1y − φ2y)
2
dxdy

= ||ψ1 − ψ2||L2(Ω0) + a2 (||φ1x − φ2x||L2(Ω0) + ||φ1y − φ2y||L2(Ω0))

≤ η + 2a2η

对任意 ε > 0，存在依赖 ε,T  的常数 η > 0，使得当

则以 (φi,ψi) 为初值的解 ui 在 [0, t0] 上成立

⎧⎪⎨⎪⎩||φ1 − φ2||L2(Ω0) ≤ η

||φ1x − φ2x||L2(Ω0) ≤ η

||φ1y − φ2y||L2(Ω0) ≤ η

||ψ1 − ψ2||L2(Ω0) ≤ η

⎧⎪⎨⎪⎩||u1 − u2||L2(Ωt) ≤ ε

||u1x − u2x||L2(Ωt) ≤ ε

||u1y − u2y||L2(Ωt) ≤ ε

||u1t − u2t||L2(Ωt) ≤ ε

(定理)  齐次方程的稳定性



E1(Ω0) = ||u1t − u2t||L2(Ωt) + a2 (||u1x − u2x||L2(Ωt) + ||u1y − u2y||L2(Ωt))

所以我们取充分小的 η 就得到.
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