Skip to content

凸函数

定理: \(\mathbb{R}^n\) 上的凸函数在 \(\mathbb{R}^n\) 上连续.

证明\(f\left( X\right)\)\({\mathbb{R}}^{n}\) 上的凸函数. 首先可以证明 \(f\left( X\right)\)\({\mathbb{R}}^{n}\) 的任何有界子集上是有界的.

事实上,对任意 \(r > 0\) ,记

\[ \Omega \left( r\right) = \left\{ {X = \left( {{x}_{1},\cdots ,{x}_{n}}\right) \in {\mathbb{R}}^{n}\left| \right| {x}_{i} \mid \leq r,i = 1,\cdots ,n}\right\} \]

\(\Omega \left( r\right)\)\({\mathbb{R}}^{n}\) 中的正方体,它有 \({2}^{n}\) 个顶点

\[ {P}_{{\varepsilon }_{1},\cdots ,{\varepsilon }_{n}} = \left( {{\varepsilon }_{1}r,\cdots ,{\varepsilon }_{n}r}\right) \]

其中 \({\varepsilon }_{i} \in \{ - 1,1\} ,i = 1,2,\cdots ,n\) . 由于 \(\forall X,Y \in {\mathbb{R}}^{n},\lambda \in \left\lbrack {0,1}\right\rbrack\)

\[ f\left( {{\lambda X} + \left( {1 - \lambda }\right) Y}\right) \leq {\lambda f}\left( X\right) + \left( {1 - \lambda }\right) f\left( Y\right) \leq \max \{ f\left( X\right) ,f\left( Y\right) \} \]

从而, \(\forall X \in \Omega \left( r\right)\)

\[ f\left( X\right) \leq \mathop{\max }\limits_{\substack{{{\varepsilon }_{i} \in \{ - 1,1\} } \\ {i = 1,\cdots ,n} }}\left\{ {f\left( {P}_{{\varepsilon }_{1}\cdots {\varepsilon }_{n}}\right) }\right\} \]

\(f\left( X\right)\)\(\Omega \left( r\right)\) 有上界. 由 \(r\) 之任意性可知 \(f\left( X\right)\) 在任意有界集上都有上界.

现证 \(f\left( X\right)\)\(\Omega \left( r\right)\) 也有下界. 若不然,则存在 \(\left\{ {X}_{m}\right\} \subseteq \Omega \left( r\right)\) ,使得 \(f\left( {X}_{m}\right) \rightarrow - \infty \left( {m \rightarrow + \infty }\right)\) . 由 \(\Omega \left( r\right)\) 的列紧性,不妨设 \({X}_{m} \rightarrow {X}_{0} \in\Omega \left( r\right)\) . 由 \(f\left( X\right)\) 的凸性可得

\[ f\left( {X}_{0}\right) \leq \frac{1}{2}f\left( {X}_{m}\right) + \frac{1}{2}f\left( {2{X}_{0} - {X}_{m}}\right) \]

由于 \(\left\{ {2{X}_{0} - {X}_{m}}\right\}\) 是有界序列,从而 \(\left\{ {f\left( {2{X}_{0} - {X}_{m}}\right) }\right\}\) 是有上界数列. 于是令 \(m \rightarrow + \infty\) 可得 \(f\left( {X}_{0}\right) = - \infty\) ,矛盾! 综上可得 \(f\left( X\right)\)\(\Omega \left( r\right)\) 上是有界的.

以下证 \(f\left( X\right)\) 连续. 任取 \(r > 0\) ,记 \({B}_{r} = \left\{ {X \in {\mathbb{R}}^{n}\left| \right| X \mid \leq r}\right\} ,{B}_{2r} = \left\{ {X \in {\mathbb{R}}^{n}\left| \right| X \mid \leq {2r}}\right\} .\;\forall X,Y \in {B}_{r}\) ,连接 \(Y,X\) 并延长,交 \(\partial {B}_{2r}\)\(Z\) ,设 \(X = {\lambda Z} + \left( {1 - \lambda }\right) Y\) ,其中 \(\lambda \in \left( {0,1}\right)\) . 易知 \(\left| {X - Y}\right| = \lambda \left| {Z - Y}\right| \geq {\lambda r}\).

由于 $$ f\left( X\right) \leq {\lambda f}\left( Z\right) + \left( {1 - \lambda }\right) f\left( Y\right) $$

从而 $$ f\left( X\right) - f\left( Y\right) \leq \lambda \left( {f\left( Z\right) - f\left( Y\right) }\right) \leq {2\lambda M} $$

其中 $$ M = \mathop{\sup }\limits_{{P \in {B}_{2r}}}\left| {f\left( P\right) }\right| $$

再由 \(\lambda \leq \frac{\left| X - Y\right| }{r}\) 可得

\[ f\left( X\right) - f\left( Y\right) \leq \frac{2M}{r}\left| {X - Y}\right| \]

\(X,Y\) 之任意性得

\[ \left| {f\left( X\right) - f\left( Y\right) }\right| \leq \frac{2M}{r}\left| {X - Y}\right| ,\;\forall X,Y \in {B}_{r} \]

\(f\left( X\right)\)\({B}_{r}\) 上利普希茨连续. 由 \(r\) 之任意性可知 \(f\left( X\right)\)\({\mathbb{R}}^{n}\) 的任何有界区域上都是利普希茨连续的. 具有这种性质的函数称为 \({\mathbb{R}}^{n}\) 上局部利普希茨连续函数.

注:以上证明把 \({\mathbb{R}}^{n}\) 换成凸区域 \(D\) 也有效,但不可换成闭凸区域.

————————————————————————————————————————————————————————————————————

定理:设 \(D \subset {\mathbb{R}}^{2}\) 是凸区域,函数 \(f\left( {x,y}\right)\) 是凸函数. 证明: \(f\left( {x,y}\right)\)\(D\) 上连续.

证明我们分两步证明这个结论: (1) 首先由凸函数性质,我们知道对于 \(\delta > 0\) 以及 \(\left\lbrack {{x}_{0} - \delta ,{x}_{0} + \delta }\right\rbrack\) 上的一元凸函数 \(g\left( x\right)\) ,容易验证 \(\forall x \in \left( {{x}_{0} - \delta ,{x}_{0} + \delta }\right)\) :

\[ \frac{g\left( {x}_{0}\right) - g\left( {{x}_{0} - \delta }\right) }{\delta }\leq \frac{g\left( x\right) - g\left( {x}_{0}\right) }{x - {x}_{0}} \leq \frac{g\left( {{x}_{0} + \delta }\right) - g\left( {x}_{0}\right) }{\delta } \]

从而

\[ \left| \frac{g\left( x\right) - g\left( {x}_{0}\right) }{x - {x}_{0}}\right| \leq \left| \frac{g\left( {{x}_{0} + \delta }\right) - g\left( {x}_{0}\right) }{\delta }\right| + \left| \frac{g\left( {x}_{0}\right) - g\left( {{x}_{0} - \delta }\right) }{\delta }\right| ,\;\forall x \in \left( {{x}_{0} - \delta ,{x}_{0} + \delta }\right) \]

由此即得 \(g\left( x\right)\)\({x}_{0}\) 连续. 一般地,可得开区间上的一元凸函数连续.

(2) 设 \(\left( {{x}_{0},{y}_{0}}\right) \in D\) . 则有 \(\delta > 0\) 使得

\[ {E}_{\delta } \equiv \left\lbrack {{x}_{0} - \delta ,{x}_{0} + \delta }\right\rbrack \times \left\lbrack {{y}_{0} - \delta ,{y}_{0} + \delta }\right\rbrack \subset D \]

注意到固定 \(x\)\(y\) 时, \(f\left( {x,y}\right)\) 作为一元函数都是凸函数,由 (1) 的结论,\(f\left( {x,{y}_{0}}\right) ,f\left( {x,{y}_{0} + \delta }\right) ,f\left( {x,{y}_{0} - \delta }\right)\) 都是 \(x \in \left\lbrack {{x}_{0} - \delta ,{x}_{0} + \delta }\right\rbrack\) 上的连续函数,从而它们有界,即存在常数 \({M}_{\delta } > 0\) 使得对 \(\forall x \in \left\lbrack {{x}_{0} - \delta ,{x}_{0} + \delta }\right\rbrack\),有

\[ \left| f\left( x,{y}_{0} + \delta \right) - f\left( x,{y}_{0}\right) \right|+\left| f\left( x,{y}_{0}\right) - f\left( x,{y}_{0} - \delta \right) \right| \]
\[ +\left| f\left( {x}_{0} + \delta ,{y}_{0}\right) - f\left( {x}_{0},{y}_{0}\right) \right|+\left| f\left( {x}_{0},{y}_{0}\right) - f\left( {x}_{0} - \delta ,{y}_{0}\right) \right| < {\delta }{M}_{\delta} \]

进一步,由 (1) 的结论,对于 \(\left( {x,y}\right) \in {E}_{\delta }\),

\[ \begin{array}{rcl} &&\left| {f\left( {x,y}\right) - f\left( {{x}_{0},{y}_{0}}\right) }\right|\\ &\leq& \left| {f\left( {x,y}\right) - f\left( {x,{y}_{0}}\right) }\right| + \left| {f\left( {x,{y}_{0}}\right) - f\left( {{x}_{0},{y}_{0}}\right) }\right| \\ &\leq& \left( {\dfrac{\left| f\left( x,{y}_{0} + \delta \right) - f\left( x,{y}_{0}\right) \right| }{\delta } + \dfrac{\left| f\left( x,{y}_{0}\right) - f\left( x,{y}_{0} - \delta \right) \right| }{\delta }}\right) \left| {y - {y}_{0}}\right| \\ &&+ \left( {\dfrac{\left| f\left( {x}_{0} + \delta ,{y}_{0}\right) - f\left( {x}_{0},{y}_{0}\right) \right| }{\delta } + \dfrac{\left| f\left( {x}_{0},{y}_{0}\right) - f\left( {x}_{0} - \delta ,{y}_{0}\right) \right| }{\delta }}\right) \left| {x - {x}_{0}}\right| \\ &\leq& {M}_{\delta }\left| {y - {y}_{0}}\right| + {M}_{\delta }\left| {x - {x}_{0}}\right| \end{array} \]

于是 \(f\left( {x,y}\right)\)\(\left( {{x}_{0},{y}_{0}}\right)\) 连续. 证毕.